These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1678537)

  • 21. Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'.
    Fields PA; Dong Y; Meng X; Somero GN
    J Exp Biol; 2015 Jun; 218(Pt 12):1801-11. PubMed ID: 26085658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.).
    Johns GC; Somero GN
    Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of human L-xylulose reductase holoenzyme: probing the role of Asn107 with site-directed mutagenesis.
    El-Kabbani O; Ishikura S; Darmanin C; Carbone V; Chung RP; Usami N; Hara A
    Proteins; 2004 May; 55(3):724-32. PubMed ID: 15103634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH.
    Chaikuad A; Fairweather V; Conners R; Joseph-Horne T; Turgut-Balik D; Brady RL
    Biochemistry; 2005 Dec; 44(49):16221-8. PubMed ID: 16331982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases.
    Dalhus B; Saarinen M; Sauer UH; Eklund P; Johansson K; Karlsson A; Ramaswamy S; Bjørk A; Synstad B; Naterstad K; Sirevåg R; Eklund H
    J Mol Biol; 2002 May; 318(3):707-21. PubMed ID: 12054817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of the enzyme reaction mechanism of malate dehydrogenase.
    Cunningham MA; Ho LL; Nguyen DT; Gillilan RE; Bash PA
    Biochemistry; 1997 Apr; 36(16):4800-16. PubMed ID: 9125501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding nature's catalytic toolkit.
    Gutteridge A; Thornton JM
    Trends Biochem Sci; 2005 Nov; 30(11):622-9. PubMed ID: 16214343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.
    Daniellou R; Zheng H; Langill DM; Sanders DA; Palmer DR
    Biochemistry; 2007 Jun; 46(25):7469-77. PubMed ID: 17539607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of the lactate dehydrogenase quaternary structure in theoretical calculations.
    Swiderek K; Paneth P
    J Phys Chem B; 2010 Mar; 114(9):3393-7. PubMed ID: 20155895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.
    Aslan AS; Birmingham WR; Karagüler NG; Turner NJ; Binay B
    Appl Biochem Biotechnol; 2016 Jun; 179(3):474-84. PubMed ID: 26852025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into substrate binding by D-2-ketoacid dehydrogenases from the structure of Lactobacillus pentosus D-lactate dehydrogenase.
    Stoll VS; Kimber MS; Pai EF
    Structure; 1996 Apr; 4(4):437-47. PubMed ID: 8740366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site directed mutagenesis: a tool for enzyme mechanism dissection.
    Wagner CR; Benkovic SJ
    Trends Biotechnol; 1990 Sep; 8(9):263-70. PubMed ID: 1366735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II.
    Clarke AR; Atkinson T; Holbrook JJ
    Trends Biochem Sci; 1989 Apr; 14(4):145-8. PubMed ID: 2658222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dehydrogenation through the looking-glass.
    Lamzin VS; Dauter Z; Wilson KS
    Nat Struct Biol; 1994 May; 1(5):281-2. PubMed ID: 7664032
    [No Abstract]   [Full Text] [Related]  

  • 38. Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases.
    Steindel PA; Chen EH; Wirth JD; Theobald DL
    Protein Sci; 2016 Jul; 25(7):1319-31. PubMed ID: 26889885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion variants of L-hydroxyisocaproate dehydrogenase. Probing substrate specificity.
    Feil IK; Lerch HP; Schomburg D
    Eur J Biochem; 1994 Aug; 223(3):857-63. PubMed ID: 8055963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function.
    el Hawrani AS; Moreton KM; Sessions RB; Clarke AR; Holbrook JJ
    Trends Biotechnol; 1994 May; 12(5):207-11. PubMed ID: 7764905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.