These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1678539)

  • 1. The electrophysiology of adenosine in the mammalian central nervous system.
    Greene RW; Haas HL
    Prog Neurobiol; 1991; 36(4):329-41. PubMed ID: 1678539
    [No Abstract]   [Full Text] [Related]  

  • 2. Cysteine sulphinate (CSA) as an excitatory amino acid transmitter candidate in the mammalian central nervous system.
    Griffiths R
    Prog Neurobiol; 1990; 35(4):313-23. PubMed ID: 1980747
    [No Abstract]   [Full Text] [Related]  

  • 3. Actions of neurotransmitters and other messengers on Ca2+ channels and K+ channels in smooth muscle cells.
    Beech DJ
    Pharmacol Ther; 1997; 73(2):91-119. PubMed ID: 9131720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pertussis toxin-sensitive G-proteins: participation in the modulation of voltage-dependent Ca2+ channels by hormones and neurotransmitters.
    Rosenthal W; Hescheler J; Eckert R; Offermanns S; Schmidt A; Hinsch KD; Spicher K; Trautwein W; Schultz G
    Adv Second Messenger Phosphoprotein Res; 1990; 24():89-94. PubMed ID: 1976337
    [No Abstract]   [Full Text] [Related]  

  • 5. Extracellular K+ accumulation in the central nervous system.
    Syková E
    Prog Biophys Mol Biol; 1983; 42(2-3):135-89. PubMed ID: 6139844
    [No Abstract]   [Full Text] [Related]  

  • 6. Transmembrane currents in capillary endothelial cells are modulated by external Mg2+ ions.
    Delpiano MA; Altura BM
    Adv Exp Med Biol; 1996; 410():115-8. PubMed ID: 9030287
    [No Abstract]   [Full Text] [Related]  

  • 7. Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: neurotransmitters modulate the open probability.
    Sah P; Isaacson JS
    Neuron; 1995 Aug; 15(2):435-41. PubMed ID: 7646895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered prevalence of gating modes in neurotransmitter inhibition of N-type calcium channels.
    Delcour AH; Tsien RW
    Science; 1993 Feb; 259(5097):980-4. PubMed ID: 8094902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic alpha2-adrenoceptors control excitatory, but not inhibitory, transmission at rat hippocampal synapses.
    Boehm S
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):439-49. PubMed ID: 10457061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-proteins and potassium currents in neurons.
    Brown DA
    Annu Rev Physiol; 1990; 52():215-42. PubMed ID: 1970470
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolic inhibitors affect the conductance of low voltage-activated calcium channels in brain capillary endothelial cells.
    Delpiano MA
    Adv Exp Med Biol; 1996; 410():109-13. PubMed ID: 9030286
    [No Abstract]   [Full Text] [Related]  

  • 12. [Ion channels of vascular smooth muscle and pharmacological effects of calcium antagonists and potassium channel openers].
    Kitamura K; Ogata R
    Fukuoka Igaku Zasshi; 1994 Nov; 85(11):309-13. PubMed ID: 7851831
    [No Abstract]   [Full Text] [Related]  

  • 13. Adenosine-mediated synaptic inhibition: partial blockade by barium does not prevent anti-epileptiform activity.
    Birnstiel S; Gerber U; Greene RW
    Synapse; 1992 Jul; 11(3):191-6. PubMed ID: 1321991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine modulation of potassium currents in preganglionic nerve terminals of avian ciliary ganglia.
    Bennett MR; Ho S
    Neurosci Lett; 1992 Mar; 137(1):41-4. PubMed ID: 1625815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels.
    Isaacson JS; Murphy GJ
    Neuron; 2001 Sep; 31(6):1027-34. PubMed ID: 11580901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic calcium current modulation by a metabotropic glutamate receptor.
    Takahashi T; Forsythe ID; Tsujimoto T; Barnes-Davies M; Onodera K
    Science; 1996 Oct; 274(5287):594-7. PubMed ID: 8849448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantal analysis of excitatory synaptic mechanisms in the mammalian central nervous system.
    Jack JJ; Kullmann DM; Larkman AU; Major G; Stratford KJ
    Cold Spring Harb Symp Quant Biol; 1990; 55():57-67. PubMed ID: 1983447
    [No Abstract]   [Full Text] [Related]  

  • 18. [Ca2+ channels in the central nervous system].
    Murakoshi T; Tanabe T
    Nihon Yakurigaku Zasshi; 1997 May; 109(5):213-22. PubMed ID: 9211447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physiological role of adenosine in the central nervous system.
    Dunwiddie TV
    Int Rev Neurobiol; 1985; 27():63-139. PubMed ID: 2867982
    [No Abstract]   [Full Text] [Related]  

  • 20. Purinergic inhibition of neurotransmitter release in the central nervous system.
    Ribeiro JA
    Pharmacol Toxicol; 1995 Nov; 77(5):299-305. PubMed ID: 8778740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.