These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 16785423)

  • 21. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids.
    Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K
    ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically encoding unnatural amino acids in neural stem cells and optically reporting voltage-sensitive domain changes in differentiated neurons.
    Shen B; Xiang Z; Miller B; Louie G; Wang W; Noel JP; Gage FH; Wang L
    Stem Cells; 2011 Aug; 29(8):1231-40. PubMed ID: 21681861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
    Young DD; Young TS; Jahnz M; Ahmad I; Spraggon G; Schultz PG
    Biochemistry; 2011 Mar; 50(11):1894-900. PubMed ID: 21280675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae.
    Chen S; Schultz PG; Brock A
    J Mol Biol; 2007 Aug; 371(1):112-22. PubMed ID: 17560600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress toward an expanded eukaryotic genetic code.
    Chin JW; Cropp TA; Chu S; Meggers E; Schultz PG
    Chem Biol; 2003 Jun; 10(6):511-9. PubMed ID: 12837384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic code expansion in the mouse brain.
    Ernst RJ; Krogager TP; Maywood ES; Zanchi R; Beránek V; Elliott TS; Barry NP; Hastings MH; Chin JW
    Nat Chem Biol; 2016 Oct; 12(10):776-778. PubMed ID: 27571478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
    Parrish AR; She X; Xiang Z; Coin I; Shen Z; Briggs SP; Dillin A; Wang L
    ACS Chem Biol; 2012 Jul; 7(7):1292-302. PubMed ID: 22554080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility.
    Caetano-Anollés G; Wang M; Caetano-Anollés D
    PLoS One; 2013; 8(8):e72225. PubMed ID: 23991065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.
    Xiao H; Peters FB; Yang PY; Reed S; Chittuluru JR; Schultz PG
    ACS Chem Biol; 2014 May; 9(5):1092-6. PubMed ID: 24506189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Code Expansion in Pseudomonas putida KT2440.
    Gao T; Guo J; Niu W
    Methods Mol Biol; 2024; 2760():209-217. PubMed ID: 38468091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genetically encoded fluorescent amino acid.
    Wang J; Xie J; Schultz PG
    J Am Chem Soc; 2006 Jul; 128(27):8738-9. PubMed ID: 16819861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids.
    Dunkelmann DL; Willis JCW; Beattie AT; Chin JW
    Nat Chem; 2020 Jun; 12(6):535-544. PubMed ID: 32472101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding the genetic code of Mus musculus.
    Han S; Yang A; Lee S; Lee HW; Park CB; Park HS
    Nat Commun; 2017 Feb; 8():14568. PubMed ID: 28220771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids.
    Schmidt MJ; Summerer D
    Methods Mol Biol; 2018; 1728():97-111. PubMed ID: 29404992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs.
    Neumann H; Slusarczyk AL; Chin JW
    J Am Chem Soc; 2010 Feb; 132(7):2142-4. PubMed ID: 20121121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning from Nature to Expand the Genetic Code.
    Ros E; Torres AG; Ribas de Pouplana L
    Trends Biotechnol; 2021 May; 39(5):460-473. PubMed ID: 32896440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe.
    Lee HS; Spraggon G; Schultz PG; Wang F
    J Am Chem Soc; 2009 Feb; 131(7):2481-3. PubMed ID: 19193005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a quadruplet codon to expand the genetic code of an animal.
    Xi Z; Davis L; Baxter K; Tynan A; Goutou A; Greiss S
    Nucleic Acids Res; 2022 May; 50(9):4801-4812. PubMed ID: 34882769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.