These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 16785528)
41. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. Resman N; Vasl J; Oblak A; Pristovsek P; Gioannini TL; Weiss JP; Jerala R J Biol Chem; 2009 May; 284(22):15052-60. PubMed ID: 19321453 [TBL] [Abstract][Full Text] [Related]
42. The cationic amphiphile 3,4-bis(tetradecyloxy)benzylamine inhibits LPS signaling by competing with endotoxin for CD14 binding. Piazza M; Calabrese V; Baruffa C; Gioannini T; Weiss J; Peri F Biochem Pharmacol; 2010 Dec; 80(12):2050-6. PubMed ID: 20599783 [TBL] [Abstract][Full Text] [Related]
43. Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Lonez C; Irvine KL; Pizzuto M; Schmidt BI; Gay NJ; Ruysschaert JM; Gangloff M; Bryant CE Cell Mol Life Sci; 2015 Oct; 72(20):3971-82. PubMed ID: 25956320 [TBL] [Abstract][Full Text] [Related]
44. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Kawamoto T; Ii M; Kitazaki T; Iizawa Y; Kimura H Eur J Pharmacol; 2008 Apr; 584(1):40-8. PubMed ID: 18299127 [TBL] [Abstract][Full Text] [Related]
45. MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. Meng J; Lien E; Golenbock DT J Biol Chem; 2010 Mar; 285(12):8695-702. PubMed ID: 20018893 [TBL] [Abstract][Full Text] [Related]
46. Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Mobarak E; Håversen L; Manna M; Rutberg M; Levin M; Perkins R; Rog T; Vattulainen I; Borén J Sci Rep; 2018 Sep; 8(1):13600. PubMed ID: 30206272 [TBL] [Abstract][Full Text] [Related]
47. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Ohto U; Fukase K; Miyake K; Shimizu T Proc Natl Acad Sci U S A; 2012 May; 109(19):7421-6. PubMed ID: 22532668 [TBL] [Abstract][Full Text] [Related]
48. MD-2-dependent human Toll-like receptor 4 monoclonal antibodies detect extracellular association of Toll-like receptor 4 with extrinsic soluble MD-2 on the cell surface. Tsukamoto H; Ihara H; Ito R; Ukai I; Suzuki N; Kimoto M; Tomioka Y; Ikeda Y Biochem Biophys Res Commun; 2013 Oct; 440(1):31-6. PubMed ID: 24021278 [TBL] [Abstract][Full Text] [Related]
49. N-linked glycosylations at Asn(26) and Asn(114) of human MD-2 are required for toll-like receptor 4-mediated activation of NF-kappaB by lipopolysaccharide. Ohnishi T; Muroi M; Tanamoto K J Immunol; 2001 Sep; 167(6):3354-9. PubMed ID: 11544325 [TBL] [Abstract][Full Text] [Related]
51. Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. Visintin A; Halmen KA; Latz E; Monks BG; Golenbock DT J Immunol; 2005 Nov; 175(10):6465-72. PubMed ID: 16272300 [TBL] [Abstract][Full Text] [Related]
52. Membrane-anchored CD14 is required for LPS-induced TLR4 endocytosis in TLR4/MD-2/CD14 overexpressing CHO cells. Shuto T; Kato K; Mori Y; Viriyakosol S; Oba M; Furuta T; Okiyoneda T; Arima H; Suico MA; Kai H Biochem Biophys Res Commun; 2005 Dec; 338(3):1402-9. PubMed ID: 16263085 [TBL] [Abstract][Full Text] [Related]
53. Modulation of toll-like receptor 4. Insights from x-ray crystallography and molecular modeling. Klett J; Reeves J; Oberhauser N; Pérez-Regidor L; Martín-Santamaria S Curr Top Med Chem; 2014; 14(23):2672-83. PubMed ID: 25515751 [TBL] [Abstract][Full Text] [Related]
55. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. Meng J; Gong M; Björkbacka H; Golenbock DT J Immunol; 2011 Oct; 187(7):3683-93. PubMed ID: 21865549 [TBL] [Abstract][Full Text] [Related]
56. Identification of a Regulatory Acidic Motif as the Determinant of Membrane Localization of TICAM-2. Funami K; Matsumoto M; Enokizono Y; Ishii N; Tatematsu M; Oshiumi H; Inagaki F; Seya T J Immunol; 2015 Nov; 195(9):4456-65. PubMed ID: 26408662 [TBL] [Abstract][Full Text] [Related]
57. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. Walsh C; Gangloff M; Monie T; Smyth T; Wei B; McKinley TJ; Maskell D; Gay N; Bryant C J Immunol; 2008 Jul; 181(2):1245-54. PubMed ID: 18606678 [TBL] [Abstract][Full Text] [Related]
58. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. Jiang Q; Akashi S; Miyake K; Petty HR J Immunol; 2000 Oct; 165(7):3541-4. PubMed ID: 11034352 [TBL] [Abstract][Full Text] [Related]
59. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Heine H; Adanitsch F; Peternelj TT; Haegman M; Kasper C; Ittig S; Beyaert R; Jerala R; Zamyatina A Front Immunol; 2021; 12():631797. PubMed ID: 33815382 [TBL] [Abstract][Full Text] [Related]
60. Cutting edge: Gln22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of taxol. Kawasaki K; Gomi K; Nishijima M J Immunol; 2001 Jan; 166(1):11-4. PubMed ID: 11123270 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]