BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16786170)

  • 1. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.
    Atlante A; Seccia TM; De Bari L; Marra E; Passarella S
    Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
    Pastore D; Di Pede S; Passarella S
    Plant Physiol; 2003 Dec; 133(4):2029-39. PubMed ID: 14671011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in enzyme levels in hypertensive heart tissue.
    Atlante A; Abruzzese F; Seccia TM; Vulpis V; Doonan S; Pirrelli A; Marra E
    Biochem Mol Biol Int; 1995 Nov; 37(5):983-90. PubMed ID: 8624506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats.
    Atlante A; Seccia TM; Marra E; Passarella S
    Mech Ageing Dev; 2011 Oct; 132(10):488-95. PubMed ID: 21855562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart.
    Scholz TD; Koppenhafer SL
    Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.
    Hong HT; Nose A; Agarie S
    J Exp Bot; 2004 Oct; 55(406):2201-11. PubMed ID: 15361538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models].
    Dynnik VV; Sel'kov EE; Ovchinnikov IA
    Biokhimiia; 1977 Sep; 42(9):1567-76. PubMed ID: 199286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats.
    Meng C; Jin X; Xia L; Shen SM; Wang XL; Cai J; Chen GQ; Wang LS; Fang NY
    J Proteome Res; 2009 May; 8(5):2463-75. PubMed ID: 19265432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles.
    Rupert BE; Segar JL; Schutte BC; Scholz TD
    J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis in Phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells.
    Carnal NW; Agostino A; Hatch MD
    Arch Biochem Biophys; 1993 Nov; 306(2):360-7. PubMed ID: 8215437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of thyroidectomy upon the activity of three mitochondrial shuttles in rats.
    Tobin RB; Berdanier CD; Ecklund RE
    J Environ Pathol Toxicol; 1979 Dec; 3(1-2):307-14. PubMed ID: 547016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.
    Yang H; Zhou L; Shi Q; Zhao Y; Lin H; Zhang M; Zhao S; Yang Y; Ling ZQ; Guan KL; Xiong Y; Ye D
    EMBO J; 2015 Apr; 34(8):1110-25. PubMed ID: 25755250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux control of the malate valve in leaf cells.
    Fridlyand LE; Backhausen JE; Scheibe R
    Arch Biochem Biophys; 1998 Jan; 349(2):290-8. PubMed ID: 9448717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria.
    Scholz TD; TenEyck CJ; Schutte BC
    J Mol Cell Cardiol; 2000 Jan; 32(1):1-10. PubMed ID: 10652185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.