BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16786427)

  • 1. Identification and kinetic characterization of HtDTC, the mitochondrial dicarboxylate-tricarboxylate carrier of Jerusalem artichoke tubers.
    Spagnoletta A; De Santis A; Tampieri E; Baraldi E; Bachi A; Genchi G
    J Bioenerg Biomembr; 2006 Feb; 38(1):57-65. PubMed ID: 16786427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of the reconstitutively active adenine nucleotide carrier from mitochondria of Jerusalem artichoke (Helianthus tuberosus L.) tubers.
    Spagnoletta A; De Santis A; Palmieri F; Genchi G
    J Bioenerg Biomembr; 2002 Dec; 34(6):465-72. PubMed ID: 12678438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria.
    Genchi G; Spagnoletta A; De Santis A; Stefanizzi L; Palmieri F
    Plant Physiol; 1999 Jul; 120(3):841-8. PubMed ID: 10398720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterization of the reconstituted tricarboxylate carrier from rat liver mitochondria.
    Bisaccia F; De Palma A; Prezioso G; Palmieri F
    Biochim Biophys Acta; 1990 Sep; 1019(3):250-6. PubMed ID: 2207115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier.
    Bisaccia F; Indiveri C; Palmieri F
    Biochim Biophys Acta; 1988 Apr; 933(2):229-40. PubMed ID: 3355813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum.
    Nozawa A; Fujimoto R; Matsuoka H; Tsuboi T; Tozawa Y
    Biochem Biophys Res Commun; 2011 Oct; 414(3):612-7. PubMed ID: 21986531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution.
    Picault N; Palmieri L; Pisano I; Hodges M; Palmieri F
    J Biol Chem; 2002 Jul; 277(27):24204-11. PubMed ID: 11978797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and purification of the tricarboxylate carrier from rat liver mitochondria.
    Bisaccia F; De Palma A; Palmieri F
    Biochim Biophys Acta; 1989 Nov; 977(2):171-6. PubMed ID: 2804096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport.
    Chen Z; Putt DA; Lash LH
    Arch Biochem Biophys; 2000 Jan; 373(1):193-202. PubMed ID: 10620338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of the tricarboxylate carrier from eel liver mitochondria.
    Zara V; Iacobazzi V; Siculella L; Gnoni GV; Palmieri F
    Biochem Biophys Res Commun; 1996 Jun; 223(3):508-13. PubMed ID: 8687426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the reconstituted tricarboxylate carrier from eel liver mitochondria.
    Zara V; Palmieri L; Franco MR; Perrone M; Gnoni GV; Palmieri F
    J Bioenerg Biomembr; 1998 Dec; 30(6):555-63. PubMed ID: 10206475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and functional characterization of a mitochondrial citrate carrier in Arabidopsis thaliana.
    Brito DS; Agrimi G; Charton L; Brilhaus D; Bitetto MG; Lana-Costa J; Messina E; Nascimento CP; Feitosa-Araújo E; Pires MV; Pérez-Díaz JL; Obata T; Porcelli V; Palmieri L; Araújo WL; Weber APM; Linka N; Fernie AR; Palmieri F; Nunes-Nesi A
    Biochem J; 2020 May; 477(9):1759-1777. PubMed ID: 32329787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria.
    Kaplan RS; Mayor JA; Johnston N; Oliveira DL
    J Biol Chem; 1990 Aug; 265(22):13379-85. PubMed ID: 2165501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization.
    Palmieri L; Picault N; Arrigoni R; Besin E; Palmieri F; Hodges M
    Biochem J; 2008 Mar; 410(3):621-9. PubMed ID: 18039180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers.
    Clausen MR; Bach V; Edelenbos M; Bertram HC
    J Agric Food Chem; 2012 Sep; 60(37):9495-501. PubMed ID: 22900787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs).
    Xu H; Liang M; Xu L; Li H; Zhang X; Kang J; Zhao Q; Zhao H
    Plant Mol Biol; 2015 Jan; 87(1-2):81-98. PubMed ID: 25522837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of the reconstitutively active adenine nucleotide carrier from maize mitochondria.
    Genchi G; Ponzone C; Bisaccia F; De Santis A; Stefanizzi L; Palmieri F
    Plant Physiol; 1996 Oct; 112(2):845-51. PubMed ID: 8883394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-batchwise technique method for rapid reconstitution of functionally active mitochondrial ADP/ATP carrier from Jerusalem artichoke (Helianthus tuberosus L.) tubers.
    Spagnoletta A; De Palma A; Prezioso G; Scalera V
    J Biochem Biophys Methods; 2008 Apr; 70(6):954-7. PubMed ID: 18076996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the reconstituted 2-oxoglutarate carrier from bovine heart mitochondria.
    Indiveri C; Palmieri F; Bisaccia F; Krämer R
    Biochim Biophys Acta; 1987 Mar; 890(3):310-8. PubMed ID: 3814587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant uncoupling protein in mitochondria from aged-dehydrated slices of Jerusalem artichoke tubers becomes sensitive to superoxide and to hydrogen peroxide without increase in protein level.
    Paventi G; Pastore D; Bobba A; Pizzuto R; Di Pede S; Passarella S
    Biochimie; 2006 Feb; 88(2):179-88. PubMed ID: 16181725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.