These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 16786427)
1. Identification and kinetic characterization of HtDTC, the mitochondrial dicarboxylate-tricarboxylate carrier of Jerusalem artichoke tubers. Spagnoletta A; De Santis A; Tampieri E; Baraldi E; Bachi A; Genchi G J Bioenerg Biomembr; 2006 Feb; 38(1):57-65. PubMed ID: 16786427 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of the reconstitutively active adenine nucleotide carrier from mitochondria of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Spagnoletta A; De Santis A; Palmieri F; Genchi G J Bioenerg Biomembr; 2002 Dec; 34(6):465-72. PubMed ID: 12678438 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria. Genchi G; Spagnoletta A; De Santis A; Stefanizzi L; Palmieri F Plant Physiol; 1999 Jul; 120(3):841-8. PubMed ID: 10398720 [TBL] [Abstract][Full Text] [Related]
4. Kinetic characterization of the reconstituted tricarboxylate carrier from rat liver mitochondria. Bisaccia F; De Palma A; Prezioso G; Palmieri F Biochim Biophys Acta; 1990 Sep; 1019(3):250-6. PubMed ID: 2207115 [TBL] [Abstract][Full Text] [Related]
5. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Bisaccia F; Indiveri C; Palmieri F Biochim Biophys Acta; 1988 Apr; 933(2):229-40. PubMed ID: 3355813 [TBL] [Abstract][Full Text] [Related]
6. Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum. Nozawa A; Fujimoto R; Matsuoka H; Tsuboi T; Tozawa Y Biochem Biophys Res Commun; 2011 Oct; 414(3):612-7. PubMed ID: 21986531 [TBL] [Abstract][Full Text] [Related]
7. Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution. Picault N; Palmieri L; Pisano I; Hodges M; Palmieri F J Biol Chem; 2002 Jul; 277(27):24204-11. PubMed ID: 11978797 [TBL] [Abstract][Full Text] [Related]
8. Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Bisaccia F; De Palma A; Palmieri F Biochim Biophys Acta; 1989 Nov; 977(2):171-6. PubMed ID: 2804096 [TBL] [Abstract][Full Text] [Related]
9. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Chen Z; Putt DA; Lash LH Arch Biochem Biophys; 2000 Jan; 373(1):193-202. PubMed ID: 10620338 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of the tricarboxylate carrier from eel liver mitochondria. Zara V; Iacobazzi V; Siculella L; Gnoni GV; Palmieri F Biochem Biophys Res Commun; 1996 Jun; 223(3):508-13. PubMed ID: 8687426 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the reconstituted tricarboxylate carrier from eel liver mitochondria. Zara V; Palmieri L; Franco MR; Perrone M; Gnoni GV; Palmieri F J Bioenerg Biomembr; 1998 Dec; 30(6):555-63. PubMed ID: 10206475 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. Kaplan RS; Mayor JA; Johnston N; Oliveira DL J Biol Chem; 1990 Aug; 265(22):13379-85. PubMed ID: 2165501 [TBL] [Abstract][Full Text] [Related]
14. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Palmieri L; Picault N; Arrigoni R; Besin E; Palmieri F; Hodges M Biochem J; 2008 Mar; 410(3):621-9. PubMed ID: 18039180 [TBL] [Abstract][Full Text] [Related]
15. Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Clausen MR; Bach V; Edelenbos M; Bertram HC J Agric Food Chem; 2012 Sep; 60(37):9495-501. PubMed ID: 22900787 [TBL] [Abstract][Full Text] [Related]
16. Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs). Xu H; Liang M; Xu L; Li H; Zhang X; Kang J; Zhao Q; Zhao H Plant Mol Biol; 2015 Jan; 87(1-2):81-98. PubMed ID: 25522837 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of the reconstitutively active adenine nucleotide carrier from maize mitochondria. Genchi G; Ponzone C; Bisaccia F; De Santis A; Stefanizzi L; Palmieri F Plant Physiol; 1996 Oct; 112(2):845-51. PubMed ID: 8883394 [TBL] [Abstract][Full Text] [Related]
18. A micro-batchwise technique method for rapid reconstitution of functionally active mitochondrial ADP/ATP carrier from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Spagnoletta A; De Palma A; Prezioso G; Scalera V J Biochem Biophys Methods; 2008 Apr; 70(6):954-7. PubMed ID: 18076996 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of the reconstituted 2-oxoglutarate carrier from bovine heart mitochondria. Indiveri C; Palmieri F; Bisaccia F; Krämer R Biochim Biophys Acta; 1987 Mar; 890(3):310-8. PubMed ID: 3814587 [TBL] [Abstract][Full Text] [Related]
20. Plant uncoupling protein in mitochondria from aged-dehydrated slices of Jerusalem artichoke tubers becomes sensitive to superoxide and to hydrogen peroxide without increase in protein level. Paventi G; Pastore D; Bobba A; Pizzuto R; Di Pede S; Passarella S Biochimie; 2006 Feb; 88(2):179-88. PubMed ID: 16181725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]