BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 16786428)

  • 1. Cyclosporin A increases mitochondrial calcium uptake capacity in cortical astrocytes but not cerebellar granule neurons.
    Bambrick LL; Chandrasekaran K; Mehrabian Z; Wright C; Krueger BK; Fiskum G
    J Bioenerg Biomembr; 2006 Feb; 38(1):43-7. PubMed ID: 16786428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons.
    Kahraman S; Bambrick LL; Fiskum G
    J Neurosci Res; 2011 Dec; 89(12):1973-8. PubMed ID: 21748780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum.
    Oliveira JM; Gonçalves J
    J Biol Chem; 2009 Feb; 284(8):5010-20. PubMed ID: 19106091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells.
    Limke TL; Atchison WD
    Toxicol Appl Pharmacol; 2002 Jan; 178(1):52-61. PubMed ID: 11781080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The roles of mitochondrial permeability transition in brain ischemia].
    Kobayashi T
    Hokkaido Igaku Zasshi; 2000 Jul; 75(4):243-52. PubMed ID: 10976404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O.
    Kristián T; Gertsch J; Bates TE; Siesjö BK
    J Neurochem; 2000 May; 74(5):1999-2009. PubMed ID: 10800943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death.
    Friberg H; Ferrand-Drake M; Bengtsson F; Halestrap AP; Wieloch T
    J Neurosci; 1998 Jul; 18(14):5151-9. PubMed ID: 9651198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways.
    Kristal BS; Dubinsky JM
    J Neurochem; 1997 Aug; 69(2):524-38. PubMed ID: 9231710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese induces the mitochondrial permeability transition in cultured astrocytes.
    Rao KV; Norenberg MD
    J Biol Chem; 2004 Jul; 279(31):32333-8. PubMed ID: 15173181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes.
    Reddy PV; Rao KV; Norenberg MD
    Lab Invest; 2008 Aug; 88(8):816-30. PubMed ID: 18591939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of Mg ions and spermine on ATP-dependent Ca2+ transport in myometrial intracellular structures. II. Comparative study of spermine, Mg ions and cyclosporin A effects on Ca2+ transport in mitochondria].
    Babich LG; Borisova LA; Shlykov SG; Titus OV; Kosterin SA
    Ukr Biokhim Zh (1999); 2004; 76(6):55-62. PubMed ID: 16350744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition.
    Naga KK; Sullivan PG; Geddes JW
    J Neurosci; 2007 Jul; 27(28):7469-75. PubMed ID: 17626207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors.
    Smaili SS; Russell JT
    Cell Calcium; 1999; 26(3-4):121-30. PubMed ID: 10598276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver.
    Andreyev A; Fiskum G
    Cell Death Differ; 1999 Sep; 6(9):825-32. PubMed ID: 10510464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition.
    Hoek JB; Farber JL; Thomas AP; Wang X
    Biochim Biophys Acta; 1995 May; 1271(1):93-102. PubMed ID: 7599232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes.
    Rama Rao KV; Jayakumar AR; Norenberg MD
    Neurochem Int; 2005 Jul; 47(1-2):31-8. PubMed ID: 15908047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential response of glutamine in cultured neurons and astrocytes.
    Rama Rao KV; Jayakumar AR; Norenberg MD
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):193-9. PubMed ID: 15573403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca2+ signals by enhancing Ca2+ uptake into the endoplasmic reticulum and mitochondria.
    Smaili SS; Stellato KA; Burnett P; Thomas AP; Gaspers LD
    J Biol Chem; 2001 Jun; 276(26):23329-40. PubMed ID: 11323421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes.
    Alano CC; Tran A; Tao R; Ying W; Karliner JS; Swanson RA
    J Neurosci Res; 2007 Nov; 85(15):3378-85. PubMed ID: 17853438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclosporin and tacrolimus (FK506) on the antigen-induced mediator release, membrane potential and 86Rb+/K+ and Ca2+ fluxes in the RBL-2H3 cell line.
    Narenjkar J; Assem el-SK; Wan BY; Marsh S; Ezeamuzie CI
    Int Immunopharmacol; 2006 May; 6(5):742-9. PubMed ID: 16546704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.