BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16786492)

  • 1. Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina.
    Hughes EA; Zalts A; Ojeda JJ; Flores AP; Glass RC; Montserrat JM
    Pest Manag Sci; 2006 Sep; 62(9):811-8. PubMed ID: 16786492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: influence of crop type.
    Hughes EA; Flores AP; Ramos LM; Zalts A; Richard Glass C; Montserrat JM
    Sci Total Environ; 2008 Feb; 391(1):34-40. PubMed ID: 18054997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Captan exposure and evaluation of a pesticide exposure algorithm among orchard pesticide applicators in the Agricultural Health Study.
    Hines CJ; Deddens JA; Jaycox LB; Andrews RN; Striley CA; Alavanja MC
    Ann Occup Hyg; 2008 Apr; 52(3):153-66. PubMed ID: 18326518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of captan air and dermal exposures among orchard pesticide applicators in the Agricultural Health Study.
    Hines CJ; Deddens JA; Coble J; Kamel F; Alavanja MC
    Ann Occup Hyg; 2011 Jul; 55(6):620-33. PubMed ID: 21427168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal exposure of pesticide applicators as a measure of coverall performance under field conditions.
    Machera K; Tsakirakis A; Charistou A; Anastasiadou P; Glass CR
    Ann Occup Hyg; 2009 Aug; 53(6):573-84. PubMed ID: 19474075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to captan in fruit growing.
    de Cock J; Heederik D; Kromhout H; Boleij JS; Hoek F; Wegh H; Tjoe Ny E
    Am Ind Hyg Assoc J; 1998 Mar; 59(3):158-65. PubMed ID: 9530801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captan and fenitrothion dissipation in field-treated cauliflowers and effect of household processing.
    Fernández-Cruz ML; Barreda M; Villarroya M; Peruga A; Llanos S; García-Baudín JM
    Pest Manag Sci; 2006 Jul; 62(7):637-45. PubMed ID: 16718745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of captan, folpet, and captafol in fruits and vegetables, using two multiresidue methods.
    Gilvydis DM; Walters SM
    J Assoc Off Anal Chem; 1984; 67(5):909-12. PubMed ID: 6501154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pesticide potential dermal exposure during the manipulation of concentrated mixtures at small horticultural and floricultural production units in Argentina: the formulation effect.
    Berenstein GA; Hughes EA; March H; Rojic G; Zalts A; Montserrat JM
    Sci Total Environ; 2014 Feb; 472():509-16. PubMed ID: 24317159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of single layer clothing penetration factors from the pesticide handlers exposure database.
    Driver J; Ross J; Mihlan G; Lunchick C; Landenberger B
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):125-37. PubMed ID: 17822819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of exposure to captan in fruit growing.
    de Cock J; Heederik D; Kromhout H; Boleij JS; Hoek F; Wegh H; Tjoe Ny E
    Am Ind Hyg Assoc J; 1998 Mar; 59(3):166-72. PubMed ID: 9530802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to pesticides in open-field farming in France.
    Lebailly P; Bouchart V; Baldi I; Lecluse Y; Heutte N; Gislard A; Malas JP
    Ann Occup Hyg; 2009 Jan; 53(1):69-81. PubMed ID: 19022871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed urinary excretion time course study of captan and folpet biomarkers in workers for the estimation of dose, main route-of-entry and most appropriate sampling and analysis strategies.
    Berthet A; Heredia-Ortiz R; Vernez D; Danuser B; Bouchard M
    Ann Occup Hyg; 2012 Aug; 56(7):815-28. PubMed ID: 22425654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of absorbed dose estimates derived from passive dosimetry measurements to those derived from biological monitoring: validation of exposure monitoring methodologies.
    Ross J; Chester G; Driver J; Lunchick C; Holden L; Rosenheck L; Barnekow D
    J Expo Sci Environ Epidemiol; 2008 Mar; 18(2):211-30. PubMed ID: 17593947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dermal exposure to pesticides among women working in Polish greenhouses using cotton patches].
    Jurewicz J; Hanke W; Sobala W; Ligocka D
    Med Pr; 2008; 59(3):197-202. PubMed ID: 18846990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesters in strawberry fields: A literature review of pesticide exposure, an observation of their work activities, and a model for exposure prediction.
    Jiang W; Hernandez B; Richmond D; Yanga N
    J Expo Sci Environ Epidemiol; 2017 Jul; 27(4):391-397. PubMed ID: 27436696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of patches and whole body sampling for the assessment of dermal exposure.
    Soutar A; Semple S; Aitken RJ; Robertson A
    Ann Occup Hyg; 2000 Oct; 44(7):511-8. PubMed ID: 11042252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to fungicides in fruit growing: re-entry time as a predictor for dermal exposure.
    Tielemans E; Louwerse E; de Cock J; Brouwer D; Zielhuis G; Heederik D
    Am Ind Hyg Assoc J; 1999; 60(6):789-93. PubMed ID: 10635545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved estimation of dermal pesticide dose to agricultural workers upon reentry.
    Kissel J; Fenske R
    Appl Occup Environ Hyg; 2000 Mar; 15(3):284-90. PubMed ID: 10701291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glove accumulation of pesticide residues for strawberry harvester exposure assessment.
    Li Y; Chen L; Chen Z; Coehlo J; Cui L; Liu Y; Lopez T; Sankaran G; Vega H; Krieger R
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):615-20. PubMed ID: 21503692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.