These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16786599)

  • 1. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2007 Jun; 67(4):961-70. PubMed ID: 17373707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism.
    Antonczak S; Fiorucci S; Golebiowski J; Cabrol-Bass D
    Phys Chem Chem Phys; 2009 Mar; 11(10):1491-501. PubMed ID: 19240925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase.
    Xu L; Liu X; Zhao W; Wang X
    J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases.
    Davis MI; Wasinger EC; Decker A; Pau MY; Vaillancourt FH; Bolin JT; Eltis LD; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2003 Sep; 125(37):11214-27. PubMed ID: 16220940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2008 Nov; 73(2):290-8. PubMed ID: 18655056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the substrate cavity dynamics of quercetinase.
    van den Bosch M; Swart M; van Gunsteren WF; Canters GW
    J Mol Biol; 2004 Nov; 344(3):725-38. PubMed ID: 15533441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Chemphyschem; 2004 Nov; 5(11):1726-33. PubMed ID: 15580933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis.
    Barney BM; Schaab MR; LoBrutto R; Francisco WA
    Protein Expr Purif; 2004 May; 35(1):131-41. PubMed ID: 15039076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis.
    Schaab MR; Barney BM; Francisco WA
    Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of dioxygen binding process in iron(III) catechol dioxygenase: "oxygen activation" vs "substrate activation".
    Nakatani N; Nakao Y; Sato H; Sakaki S
    J Phys Chem B; 2009 Apr; 113(14):4826-36. PubMed ID: 19284795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosyl hydride (HNO) replaces dioxygen in nitroxygenase activity of manganese quercetin dioxygenase.
    Kumar MR; Zapata A; Ramirez AJ; Bowen SK; Francisco WA; Farmer PJ
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18926-31. PubMed ID: 22084064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.
    Li K; Fielding EN; Condurso HL; Bruner SD
    Acta Crystallogr D Struct Biol; 2017 Jul; 73(Pt 7):573-580. PubMed ID: 28695857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases.
    Neidig ML; Kavana M; Moran GR; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.
    Saito T; Kawakami T; Yamanaka S; Okumura M
    J Phys Chem B; 2015 Jun; 119(23):6952-62. PubMed ID: 25990020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
    Podder N; Dey S; Anoop A; Mandal S
    Dalton Trans; 2022 Mar; 51(11):4338-4353. PubMed ID: 35191437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ONIOM(DFT:MM) study of 2-hydroxyethylphosphonate dioxygenase: what determines the destinies of different substrates?
    Hirao H; Morokuma K
    J Am Chem Soc; 2011 Sep; 133(37):14550-3. PubMed ID: 21875082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity.
    Wojdyła Z; Borowski T
    J Biol Inorg Chem; 2016 Jul; 21(4):475-89. PubMed ID: 27170159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.