BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16786599)

  • 1. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2007 Jun; 67(4):961-70. PubMed ID: 17373707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism.
    Antonczak S; Fiorucci S; Golebiowski J; Cabrol-Bass D
    Phys Chem Chem Phys; 2009 Mar; 11(10):1491-501. PubMed ID: 19240925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase.
    Xu L; Liu X; Zhao W; Wang X
    J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases.
    Davis MI; Wasinger EC; Decker A; Pau MY; Vaillancourt FH; Bolin JT; Eltis LD; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2003 Sep; 125(37):11214-27. PubMed ID: 16220940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2008 Nov; 73(2):290-8. PubMed ID: 18655056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the substrate cavity dynamics of quercetinase.
    van den Bosch M; Swart M; van Gunsteren WF; Canters GW
    J Mol Biol; 2004 Nov; 344(3):725-38. PubMed ID: 15533441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Chemphyschem; 2004 Nov; 5(11):1726-33. PubMed ID: 15580933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis.
    Barney BM; Schaab MR; LoBrutto R; Francisco WA
    Protein Expr Purif; 2004 May; 35(1):131-41. PubMed ID: 15039076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis.
    Schaab MR; Barney BM; Francisco WA
    Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of dioxygen binding process in iron(III) catechol dioxygenase: "oxygen activation" vs "substrate activation".
    Nakatani N; Nakao Y; Sato H; Sakaki S
    J Phys Chem B; 2009 Apr; 113(14):4826-36. PubMed ID: 19284795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosyl hydride (HNO) replaces dioxygen in nitroxygenase activity of manganese quercetin dioxygenase.
    Kumar MR; Zapata A; Ramirez AJ; Bowen SK; Francisco WA; Farmer PJ
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18926-31. PubMed ID: 22084064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.
    Li K; Fielding EN; Condurso HL; Bruner SD
    Acta Crystallogr D Struct Biol; 2017 Jul; 73(Pt 7):573-580. PubMed ID: 28695857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases.
    Neidig ML; Kavana M; Moran GR; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.
    Saito T; Kawakami T; Yamanaka S; Okumura M
    J Phys Chem B; 2015 Jun; 119(23):6952-62. PubMed ID: 25990020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
    Podder N; Dey S; Anoop A; Mandal S
    Dalton Trans; 2022 Mar; 51(11):4338-4353. PubMed ID: 35191437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ONIOM(DFT:MM) study of 2-hydroxyethylphosphonate dioxygenase: what determines the destinies of different substrates?
    Hirao H; Morokuma K
    J Am Chem Soc; 2011 Sep; 133(37):14550-3. PubMed ID: 21875082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity.
    Wojdyła Z; Borowski T
    J Biol Inorg Chem; 2016 Jul; 21(4):475-89. PubMed ID: 27170159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.