BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16786599)

  • 21. Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol.
    Ishida T; Senda T; Tanaka H; Yamamoto A; Horiike K
    Biochem Biophys Res Commun; 2005 Dec; 338(1):223-9. PubMed ID: 16169514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis.
    Widboom PF; Fielding EN; Liu Y; Bruner SD
    Nature; 2007 May; 447(7142):342-5. PubMed ID: 17507985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DpgC is a metal- and cofactor-free 3,5-dihydroxyphenylacetyl-CoA 1,2-dioxygenase in the vancomycin biosynthetic pathway.
    Tseng CC; Vaillancourt FH; Bruner SD; Walsh CT
    Chem Biol; 2004 Sep; 11(9):1195-203. PubMed ID: 15380180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2008 Sep; 130(37):12299-309. PubMed ID: 18712870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inclusion mechanism of steroid drugs into beta-cyclodextrins. Insights from free energy calculations.
    Cai W; Sun T; Liu P; Chipot C; Shao X
    J Phys Chem B; 2009 Jun; 113(22):7836-43. PubMed ID: 19425557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex.
    Jeoung JH; Nianios D; Fetzner S; Dobbek H
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3281-4. PubMed ID: 26846734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Docking and DFT studies on ligand binding to Quercetin 2,3-dioxygenase.
    Malkhasian AY; Howlin BJ
    J Biomol Struct Dyn; 2016 Nov; 34(11):2453-61. PubMed ID: 26599260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.
    Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M
    Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding pockets and permeation channels for dioxygen through cofactorless 3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase in association with its natural substrate, 3-hydroxy-2-methylquinolin-4(1H)-one. A perspective from molecular dynamics simulations.
    Pietra F
    Chem Biodivers; 2014 Jun; 11(6):861-71. PubMed ID: 24934672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into ligand selectivity in estrogen receptor isoforms: molecular dynamics simulations and binding free energy calculations.
    Zeng J; Li W; Zhao Y; Liu G; Tang Y; Jiang H
    J Phys Chem B; 2008 Mar; 112(9):2719-26. PubMed ID: 18266357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.
    Ang EL; Obbard JP; Zhao H
    FEBS J; 2007 Feb; 274(4):928-39. PubMed ID: 17269935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New functional model complexes of intradiol-cleaving catechol dioxygenases: properties and reactivity of CuII(L)(O2Ncat).
    Kaizer J; Zsigmond Z; Ganszky I; Speier G; Giorgi M; Réglier M
    Inorg Chem; 2007 May; 46(11):4660-6. PubMed ID: 17458955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases.
    Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ
    J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii.
    Leitgeb S; Straganz GD; Nidetzky B
    Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of fluorescence quenching mechanism between quercetin and tyrosine-H(2)O(2)-enzyme catalyzed product.
    Zhang M; Lv Q; Yue N; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):572-6. PubMed ID: 19109051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conversion of hydroxyphenylpyruvate dioxygenases into hydroxymandelate synthases by directed evolution.
    O'Hare HM; Huang F; Holding A; Choroba OW; Spencer JB
    FEBS Lett; 2006 Jun; 580(14):3445-50. PubMed ID: 16730004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1.
    Jakoncic J; Jouanneau Y; Meyer C; Stojanoff V
    FEBS J; 2007 May; 274(10):2470-81. PubMed ID: 17451434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.