BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16786684)

  • 1. Ecosystemic effects of salmon farming increase mercury contamination in wild fish.
    Debruyn AM; Trudel M; Eyding N; Harding J; McNally H; Mountain R; Orr C; Urban D; Verenitch S; Mazumder A
    Environ Sci Technol; 2006 Jun; 40(11):3489-93. PubMed ID: 16786684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds.
    Zupo V; Graber G; Kamel S; Plichta V; Granitzer S; Gundacker C; Wittmann KJ
    Environ Pollut; 2019 Dec; 255(Pt 1):112975. PubMed ID: 31541831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do salmon farms increase the concentrations of mercury and other elements in wild fish?
    Bustnes JO; Nygård T; Dempster T; Ciesielski T; Jenssen BM; Bjørn PA; Uglem I
    J Environ Monit; 2011 Jun; 13(6):1687-94. PubMed ID: 21589984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do low-mercury terrestrial resources subsidize low-mercury growth of stream fish? Differences between species along a productivity gradient.
    Ward DM; Nislow KH; Folt CL
    PLoS One; 2012; 7(11):e49582. PubMed ID: 23166717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury exposure and source tracking in distinct marine-caged fish farm in southern China.
    Xu X; Wang WX
    Environ Pollut; 2017 Jan; 220(Pt B):1138-1146. PubMed ID: 27908487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are fur farms a potential source of persistent organic pollutants or mercury to nearby freshwater ecosystems?
    Gregory BRB; Kissinger JA; Clarkson C; Kimpe LE; Eickmeyer DC; Kurek J; Smol JP; Blais JM
    Sci Total Environ; 2022 Aug; 833():155100. PubMed ID: 35398138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total mercury levels in commercial fish species from Italian fishery and aquaculture.
    Di Lena G; Casini I; Caproni R; Fusari A; Orban E
    Food Addit Contam Part B Surveill; 2017 Jun; 10(2):118-127. PubMed ID: 28077025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem.
    Liang P; Feng X; You Q; Gao X; Xu J; Wong M; Christie P; Wu SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25923-25932. PubMed ID: 28940142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs.
    Oh ES; Edgar GJ; Kirkpatrick JB; Stuart-Smith RD; Barrett NS
    Mar Pollut Bull; 2015 Sep; 98(1-2):201-9. PubMed ID: 26169226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition.
    Knightes CD; Sunderland EM; Craig Barber M; Johnston JM; Ambrose RB
    Environ Toxicol Chem; 2009 Apr; 28(4):881-93. PubMed ID: 19391686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nationwide monitoring of mercury in wild and farmed fish from fresh and coastal waters of Korea.
    Kim CK; Lee TW; Lee KT; Lee JH; Lee CB
    Chemosphere; 2012 Nov; 89(11):1360-8. PubMed ID: 22726426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of flow diversion by run-of-river dams on American dipper diet and mercury exposure.
    Silverthorn VM; Bishop CA; Jardine T; Elliott JE; Morrissey CA
    Environ Toxicol Chem; 2018 Feb; 37(2):411-426. PubMed ID: 29092091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury contamination of the fish community of a semi-arid and arid river system: spatial variation and the influence of environmental gradients.
    Smith A; Abuzeineh AA; Chumchal MM; Bonner TH; Nowlin WH
    Environ Toxicol Chem; 2010 Aug; 29(8):1762-72. PubMed ID: 20821630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of short-term fallowing as a strategy for the management of recurring organic enrichment under salmon cages.
    Macleod CK; Moltschaniwskyj NA; Crawford CM
    Mar Pollut Bull; 2006 Nov; 52(11):1458-66. PubMed ID: 16828119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution.
    Cipro CVZ; Montone RC; Bustamante P
    Mar Pollut Bull; 2017 Jan; 114(1):564-570. PubMed ID: 27717573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective.
    Visha A; Gandhi N; Bhavsar SP; Arhonditsis GB
    Environ Pollut; 2018 Dec; 243(Pt A):777-789. PubMed ID: 30224205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total and methyl mercury in the water, sediment, and fishes of Vembanad, a tropical backwater system in India.
    Ramasamy EV; Jayasooryan KK; Chandran MS; Mohan M
    Environ Monit Assess; 2017 Mar; 189(3):130. PubMed ID: 28243932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: the role of physical, chemical, and biological factors.
    Evans MS; Lockhart WL; Doetzel L; Low G; Muir D; Kidd K; Stephens G; Delaronde J
    Sci Total Environ; 2005 Dec; 351-352():479-500. PubMed ID: 16183101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of benthic macrofauna in the trophic transfer of mercury in a low-diversity temperate coastal ecosystem (Puck Lagoon, southern Baltic Sea).
    Jędruch A; Bełdowska M; Ziółkowska M
    Environ Monit Assess; 2019 Feb; 191(3):137. PubMed ID: 30734103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.