BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16786690)

  • 1. Reoxidation behavior of technetium, iron, and sulfur in estuarine sediments.
    Burke IT; Boothman C; Lloyd JR; Livens FR; Charnock JM; McBeth JM; Mortimer RJ; Morris K
    Environ Sci Technol; 2006 Jun; 40(11):3529-35. PubMed ID: 16786690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of progressive anoxia on the solubility of technetium in sediments.
    Burke IT; Boothman C; Lloyd JR; Mortimer RJ; Livens FR; Morris K
    Environ Sci Technol; 2005 Jun; 39(11):4109-16. PubMed ID: 15984789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron.
    Fan D; Anitori RP; Tebo BM; Tratnyek PG; Lezama Pacheco JS; Kukkadapu RK; Kovarik L; Engelhard MH; Bowden ME
    Environ Sci Technol; 2014 Jul; 48(13):7409-17. PubMed ID: 24884124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeochemical Cycling of
    Williamson AJ; Lloyd JR; Boothman C; Law GTW; Shaw S; Small JS; Vettese GF; Williams HA; Morris K
    Environ Sci Technol; 2021 Dec; 55(23):15862-15872. PubMed ID: 34825817
    [No Abstract]   [Full Text] [Related]  

  • 5. Impacts of Repeated Redox Cycling on Technetium Mobility in the Environment.
    Masters-Waage NK; Morris K; Lloyd JR; Shaw S; Mosselmans JFW; Boothman C; Bots P; Rizoulis A; Livens FR; Law GTW
    Environ Sci Technol; 2017 Dec; 51(24):14301-14310. PubMed ID: 29144125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization of technetium from reduced sediments under seawater inundation and intrusion scenarios.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Environ Sci Technol; 2012 Nov; 46(21):11798-803. PubMed ID: 23050555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach.
    Lear G; McBeth JM; Boothman C; Gunning DJ; Ellis BL; Lawson RS; Morris K; Burke IT; Bryan ND; Brown AP; Livens FR; Lloyd JR
    Environ Sci Technol; 2010 Jan; 44(1):156-62. PubMed ID: 20039746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitrate in conditioning aquifer sediments for technetium bioreduction.
    Law GT; Geissler A; Boothman C; Burke IT; Livens FR; Lloyd JR; Morris K
    Environ Sci Technol; 2010 Jan; 44(1):150-5. PubMed ID: 20039745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of oxbow lakes in controlling redox geochemistry of shallow groundwater under a heterogeneous fluvial sedimentary environment in an agricultural field: Coexistence of iron and sulfate reduction.
    Choi BY; Yun ST; Kim KH
    J Contam Hydrol; 2016; 185-186():28-41. PubMed ID: 26788873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.
    Marshall TA; Morris K; Law GT; Mosselmans JF; Bots P; Parry SA; Shaw S
    Environ Sci Technol; 2014 Oct; 48(20):11853-62. PubMed ID: 25236360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides.
    Peretyazhko T; Zachara JM; Heald SM; Kukkadapu RK; Liu C; Plymale AE; Resch CT
    Environ Sci Technol; 2008 Aug; 42(15):5499-506. PubMed ID: 18754467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Immobilization of Technetium via Bioremediation with Slow-Release Substrates.
    Newsome L; Cleary A; Morris K; Lloyd JR
    Environ Sci Technol; 2017 Feb; 51(3):1595-1604. PubMed ID: 28051295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.
    Baldwin DS; Mitchell A
    Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK.
    Begg JD; Burke IT; Morris K
    Sci Total Environ; 2007 Feb; 373(1):297-304. PubMed ID: 17169407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic mobilization from sediments in microcosms under sulfate reduction.
    Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC
    Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagenesis of sulfur, iron and phosphorus in sediments of an urban bay impacted by multiple anthropogenic perturbations.
    Ma WW; Zhu MX; Yang GP; Li WJ; Meng T; Li T
    Mar Pollut Bull; 2019 Sep; 146():366-376. PubMed ID: 31426169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.
    Newsome L; Morris K; Cleary A; Masters-Waage NK; Boothman C; Joshi N; Atherton N; Lloyd JR
    J Hazard Mater; 2019 Feb; 364():134-142. PubMed ID: 30343175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin.
    Noël V; Boye K; Kukkadapu RK; Bone S; Lezama Pacheco JS; Cardarelli E; Janot N; Fendorf S; Williams KH; Bargar JR
    Sci Total Environ; 2017 Dec; 603-604():663-675. PubMed ID: 28359569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.