BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16786857)

  • 1. Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives.
    Arroyo López FN; Durán Quintana MC; Garrido Fernández A
    J Food Prot; 2006 Jun; 69(6):1354-64. PubMed ID: 16786857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study.
    Dai Y; Normand MD; Weiss J; Peleg M
    J Food Prot; 2010 Mar; 73(3):515-23. PubMed ID: 20202338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of microbes-induced spoilage in sodium chloride-free cucumber fermentations employing preservatives.
    Pérez-Díaz IM; Medina E; Page CA; Johanningsmeier SD; Daughtry KV; Moeller L
    J Food Sci; 2022 Nov; 87(11):5054-5069. PubMed ID: 36254496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Native Spoilage Yeast on Dealcoholized Red Wine by Preservatives Alone and in Binary Mixtures.
    Sánchez-Rubio M; Guerrouj K; Taboada-Rodríguez A; López-Gómez A; Marín-Iniesta F
    J Food Sci; 2017 Sep; 82(9):2128-2133. PubMed ID: 28833163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth response of Escherichia coli ATCC 35218 adapted to several concentrations of sodium benzoate and potassium sorbate.
    Santiesteban-López NA; Rosales M; Palou E; López-Malo A
    J Food Prot; 2009 Nov; 72(11):2301-7. PubMed ID: 19903392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the physicochemical and microbiological changes in "seasoned" olives during the shelf-life period.
    López FN; Romero C; Del Carmen Durán Quintana M; López AL; García PG; Fernández AG
    J Agric Food Chem; 2005 Jun; 53(13):5285-92. PubMed ID: 15969509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives.
    Pérez-Díaz IM; McFeeters RF
    J Food Sci; 2008 Aug; 73(6):M287-91. PubMed ID: 19241560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hurdle technology on Monascus ruber growth in green table olives: a response surface methodology approach.
    Cappato LP; Martins AMD; Ferreira EHR; Rosenthal A
    Braz J Microbiol; 2018; 49(1):112-119. PubMed ID: 29100931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures.
    Bautista-Gallego J; Arroyo-López FN; Durán-Quintana MC; Garrido-Fernández A
    Food Microbiol; 2010 May; 27(3):403-12. PubMed ID: 20227606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.
    Pérez-Díaz IM; McFeeters RF
    J Food Sci; 2010 May; 75(4):M204-8. PubMed ID: 20546411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the effects of zinc chloride as a preservative in cracked table olive packing.
    Bautista-Gallego J; Arroyo-López FN; Romero-Gil V; Rodríguez-Gómez F; Garrido-Fernández A
    J Food Prot; 2011 Dec; 74(12):2169-76. PubMed ID: 22186060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values.
    Suhr KI; Nielsen PV
    Int J Food Microbiol; 2004 Aug; 95(1):67-78. PubMed ID: 15240076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of the growth-no growth interface of Issatchenkia occidentalis, an olive spoiling yeast, as a function of the culture media, NaCl, citric and sorbic acid concentrations: study of its inactivation in the no growth region.
    Arroyo López FN; Quintana MC; Fernández AG
    Int J Food Microbiol; 2007 Jun; 117(2):150-9. PubMed ID: 17445929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).
    Guynot ME; Ramos AJ; Sanchis V; Marín S
    Int J Food Microbiol; 2005 May; 101(2):161-8. PubMed ID: 15862878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Listeria monocytogenes on sliced ham and turkey products using benzoate, propionate, and sorbate.
    Glass KA; McDonnell LM; Rassel RC; Zierke KL
    J Food Prot; 2007 Oct; 70(10):2306-12. PubMed ID: 17969612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinations of antimycotics to inhibit the growth of molds capable of producing 1,3-pentadiene.
    Mann DA; Beuchat LR
    Food Microbiol; 2008 Feb; 25(1):144-53. PubMed ID: 17993388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that sorbic acid does not inhibit yeast as a classic 'weak acid preservative'.
    Stratford M; Anslow PA
    Lett Appl Microbiol; 1998 Oct; 27(4):203-6. PubMed ID: 9812395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance of yeast flora of labaneh to potassium sorbate and sodium benzoate.
    Mihyar GF; Yamani MI; al-Sa'ed AK
    J Dairy Sci; 1997 Oct; 80(10):2304-9. PubMed ID: 9361202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing organic acids and salt derivatives as antimicrobials against selected poultry-borne Listeria monocytogenes strains in vitro.
    Lues JF; Theron MM
    Foodborne Pathog Dis; 2012 Dec; 9(12):1126-9. PubMed ID: 23190165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species.
    Stratford M; Vallières C; Geoghegan IA; Archer DB; Avery SV
    mSphere; 2020 May; 5(3):. PubMed ID: 32461271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.