BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 16787053)

  • 1. To patterned binary polymer brushes via capillary force lithography and surface-initiated polymerization.
    Liu Y; Klep V; Luzinov I
    J Am Chem Soc; 2006 Jun; 128(25):8106-7. PubMed ID: 16787053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP.
    Tria MC; Advincula RC
    Macromol Rapid Commun; 2011 Jul; 32(13):966-71. PubMed ID: 21542044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally decoupled soft lithography for patterning polymer brushes.
    Moran IW; Ell JR; Carter KR
    Small; 2011 Sep; 7(18):2669-74. PubMed ID: 21818847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP.
    Estillore NC; Advincula RC
    Langmuir; 2011 May; 27(10):5997-6008. PubMed ID: 21513321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption.
    Coad BR; Lu Y; Meagher L
    Acta Biomater; 2012 Feb; 8(2):608-18. PubMed ID: 22023749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile approach to patterned binary polymer brush through photolithography and surface-initiated photopolymerization.
    Jia X; Jiang X; Liu R; Yin J
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1200-5. PubMed ID: 20361774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization.
    Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A
    Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.
    Wei Q; Yu B; Wang X; Zhou F
    Macromol Rapid Commun; 2014 Jun; 35(11):1046-54. PubMed ID: 24648357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution, large-area, serial fabrication of 3D polymer brush structures by parallel dip-pen nanodisplacement lithography.
    Zhou X; Liu Z; Xie Z; Liu X; Zheng Z
    Small; 2012 Dec; 8(23):3568-72. PubMed ID: 22887938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the collapse dynamics of poly(N-isopropylacrylamide) brushes by AFM: effects of co-nonsolvency and grafting densities.
    Sui X; Chen Q; Hempenius MA; Vancso GJ
    Small; 2011 May; 7(10):1440-7. PubMed ID: 21506265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.
    Pan G; Zhang Y; Guo X; Li C; Zhang H
    Biosens Bioelectron; 2010 Nov; 26(3):976-82. PubMed ID: 20837394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonbiofouling polymer brush with latent aldehyde functionality as a template for protein micropatterning.
    Zou Y; Yeh PY; Rossi NA; Brooks DE; Kizhakkedathu JN
    Biomacromolecules; 2010 Jan; 11(1):284-93. PubMed ID: 20000794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer brushes via surface-initiated polymerizations.
    Edmondson S; Osborne VL; Huck WT
    Chem Soc Rev; 2004 Jan; 33(1):14-22. PubMed ID: 14737505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
    Lego B; Skene WG; Giasson S
    Langmuir; 2008 Jan; 24(2):379-82. PubMed ID: 18076200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecule-functionalized polymer brushes.
    Jiang H; Xu FJ
    Chem Soc Rev; 2013 Apr; 42(8):3394-426. PubMed ID: 23348574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer grafting via ATRP initiated from macroinitiator synthesized on surface.
    Liu Y; Klep V; Zdyrko B; Luzinov I
    Langmuir; 2004 Aug; 20(16):6710-8. PubMed ID: 15274576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films.
    Gao T; Wang X; Yu B; Wei Q; Xia Y; Zhou F
    Langmuir; 2013 Jan; 29(4):1054-60. PubMed ID: 23294478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.