These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16787310)

  • 1. Reversible regulation of chymotrypsin activity using negatively charged gold nanoparticles featuring malonic acid termini.
    Simard JM; Szymanski B; Rotello VM
    Med Chem; 2005 Mar; 1(2):153-7. PubMed ID: 16787310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ionic strength on the binding of alpha-chymotrypsin to nanoparticle receptors.
    Verma A; Simard JM; Rotello VM
    Langmuir; 2004 May; 20(10):4178-81. PubMed ID: 15969414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors.
    Fischer NO; McIntosh CM; Simard JM; Rotello VM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5018-23. PubMed ID: 11929986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles.
    You CC; De M; Han G; Rotello VM
    J Am Chem Soc; 2005 Sep; 127(37):12873-81. PubMed ID: 16159281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer-controlled substrate selectivity using noncovalent enzyme-nanoparticle conjugates.
    Hong R; Emrick T; Rotello VM
    J Am Chem Soc; 2004 Oct; 126(42):13572-3. PubMed ID: 15493887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements.
    Goodman CM; Chari NS; Han G; Hong R; Ghosh P; Rotello VM
    Chem Biol Drug Des; 2006 Apr; 67(4):297-304. PubMed ID: 16629827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with alpha-chymotrypsin.
    You CC; De M; Rotello VM
    Org Lett; 2005 Dec; 7(25):5685-8. PubMed ID: 16321022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors.
    Fischer NO; Verma A; Goodman CM; Simard JM; Rotello VM
    J Am Chem Soc; 2003 Nov; 125(44):13387-91. PubMed ID: 14583034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced inhibition of chymotrypsin using photocleavable monolayers on gold nanoparticles.
    Fischer NO; Paulini R; Drechsler U; Rotello VM
    Chem Commun (Camb); 2004 Dec; (24):2866-7. PubMed ID: 15599446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds.
    Hong R; Fischer NO; Verma A; Goodman CM; Emrick T; Rotello VM
    J Am Chem Soc; 2004 Jan; 126(3):739-43. PubMed ID: 14733547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function.
    Sandanaraj BS; Vutukuri DR; Simard JM; Klaikherd A; Hong R; Rotello VM; Thayumanavan S
    J Am Chem Soc; 2005 Aug; 127(30):10693-8. PubMed ID: 16045357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals.
    Wang Y; Zeiri O; Meshi L; Stellacci F; Weinstock IA
    Chem Commun (Camb); 2012 Oct; 48(78):9765-7. PubMed ID: 22918232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning substrate selectivity of a cationic enzyme using cationic polymers.
    Roy R; Sandanaraj BS; Klaikherd A; Thayumanavan S
    Langmuir; 2006 Aug; 22(18):7695-700. PubMed ID: 16922552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Ionic Strength in the Formation of Stable Supramolecular Nanoparticle-Protein Conjugates for Biosensing.
    Brancolini G; Rotello VM; Corni S
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved organic matter adsorption to model surfaces: adlayer formation, properties, and dynamics at the nanoscale.
    Armanious A; Aeppli M; Sander M
    Environ Sci Technol; 2014 Aug; 48(16):9420-9. PubMed ID: 25024044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of gold nanoparticles to spectrophotometric sensing of hydrophilic anions based on molecular recognition by urea derivative.
    Kado S; Furui A; Akiyama Y; Nakahara Y; Kimura K
    Anal Sci; 2009 Feb; 25(2):261-5. PubMed ID: 19212063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and CD spectroscopic analysis of the alpha-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide.
    De Diego T; Lozano P; Gmouh S; Vaultier M; Iborra JL
    Biotechnol Bioeng; 2004 Dec; 88(7):916-24. PubMed ID: 15515169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.
    Hou J; Szaflarski DM; Simon JD
    J Phys Chem B; 2013 Apr; 117(16):4587-93. PubMed ID: 23305403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
    Krüger C; Agarwal S; Greiner A
    J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.