BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1678741)

  • 1. The hydroxylation of phenylalanine and tyrosine by tyrosine hydroxylase from cultured pheochromocytoma cells.
    Ribeiro P; Pigeon D; Kaufman S
    J Biol Chem; 1991 Aug; 266(24):16207-11. PubMed ID: 1678741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "7-tetrahydrobiopterin," a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydroxylases.
    Davis MD; Ribeiro P; Tipper J; Kaufman S
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10109-13. PubMed ID: 1359535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on phenylalanine and tyrosine hydroxylation by rat brain tyrosine hydroxylase.
    Katz I; Lloyd T; Kaufman S
    Biochim Biophys Acta; 1976 Oct; 445(3):567-78. PubMed ID: 9989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the formation of the 4a-carbinolamine during the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    J Biol Chem; 1989 May; 264(15):8585-96. PubMed ID: 2722790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7-Tetrahydrobiopterin is an uncoupled cofactor for rat hepatic phenylalanine hydroxylase.
    Davis MD; Kaufman S
    FEBS Lett; 1991 Jul; 285(1):17-20. PubMed ID: 2065777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric effect of tetrahydrobiopterin cofactors on tyrosine hydroxylase activity.
    Minami M; Takahashi T; Maruyama W; Takahashi A; Nagatsu T; Naoi M
    Life Sci; 1992; 50(1):15-20. PubMed ID: 1345877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase.
    Maass A; Scholz J; Moser A
    Eur J Biochem; 2003 Mar; 270(6):1065-75. PubMed ID: 12631267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylalanine as substrate for tyrosine hydroxylase in bovine adrenal chromaffin cells.
    Fukami MH; Haavik J; Flatmark T
    Biochem J; 1990 Jun; 268(2):525-8. PubMed ID: 1973034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-induction of tetrahydrobiopterin (BH4) levels and tyrosine hydroxylase activity in cultured PC12 cells.
    Anastasiadis PZ; States JC; Kuhn DM; Levine RA
    Adv Exp Med Biol; 1993; 338():227-30. PubMed ID: 7905696
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase.
    Daubner SC; Avila A; Bailey JO; Barrera D; Bermudez JY; Giles DH; Khan CA; Shaheen N; Thompson JW; Vasquez J; Oxley SP; Fitzpatrick PF
    Biochemistry; 2013 Feb; 52(8):1446-55. PubMed ID: 23368961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of phenylalanine on DOPA synthesis in PC12 cells.
    DePietro FR; Fernstrom JD
    Neurochem Res; 1998 Jul; 23(7):1011-20. PubMed ID: 9690745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation by pterins of the phosphorylation and phenylalanine activation of phenylalanine 4-mono-oxygenase.
    Døskeland AP; Haavik J; Flatmark T; Døskeland SO
    Biochem J; 1987 Mar; 242(3):867-74. PubMed ID: 3036104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Products of the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    Arch Biochem Biophys; 1993 Jul; 304(1):9-16. PubMed ID: 8323303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of rat liver phenylalanine hydroxylase. III. Control of catalysis by (6R)-tetrahydrobiopterin and phenylalanine.
    Xia T; Gray DW; Shiman R
    J Biol Chem; 1994 Oct; 269(40):24657-65. PubMed ID: 7929137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative roles of phenylalanine and tyrosine as substrates for DOPA synthesis in PC12 cells.
    DePietro FR; Fernstrom JD
    Brain Res; 1999 Jun; 831(1-2):72-84. PubMed ID: 10411985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site.
    Goodwill KE; Sabatier C; Stevens RC
    Biochemistry; 1998 Sep; 37(39):13437-45. PubMed ID: 9753429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversing the substrate specificities of phenylalanine and tyrosine hydroxylase: aspartate 425 of tyrosine hydroxylase is essential for L-DOPA formation.
    Daubner SC; Melendez J; Fitzpatrick PF
    Biochemistry; 2000 Aug; 39(32):9652-61. PubMed ID: 10933781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of striatal tyrosine hydroxylase by low concentrations of apomorphine.
    Laschinski G; Kittner B; Bräutigam M
    Naunyn Schmiedebergs Arch Pharmacol; 1984 Sep; 327(2):114-8. PubMed ID: 6149468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interaction of the diastereomers 7(R)- and 7(S)-tetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo.
    Pey AL; Martinez A; Charubala R; Maitland DJ; Teigen K; Calvo A; Pfleiderer W; Wood JM; Schallreuter KU
    FASEB J; 2006 Oct; 20(12):2130-2. PubMed ID: 16935936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.