These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 167875)
21. Action of spermine on phosphate transport in liver mitochondria. Toninello A; Di Lisa F; Siliprandi D; Siliprandi N Arch Biochem Biophys; 1986 Mar; 245(2):363-8. PubMed ID: 3954358 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of outer hair cell electromotility by sulfhydryl specific reagents. Kalinec F; Kachar B Neurosci Lett; 1993 Jul; 157(2):231-4. PubMed ID: 8233059 [TBL] [Abstract][Full Text] [Related]
23. Transport of sugars in chick-embryo fibroblasts. Evidence for a low-affinity system and a high-affinity system for glucose transport. Christopher CW; Kohlbacher MS; Amos H Biochem J; 1976 Aug; 158(2):439-50. PubMed ID: 186039 [TBL] [Abstract][Full Text] [Related]
24. Dual effect of N-ethylmaleimide on Cl- transport across the thin ascending limb of Henle's loop. Imai M; Kondo Y; Koseki C; Yoshitomi K Pflugers Arch; 1988 May; 411(5):520-8. PubMed ID: 2455269 [TBL] [Abstract][Full Text] [Related]
25. Effect of verapamil and sulfhydryl reagents on calcium transport in bovine spermatozoa. Breitbart H; Lardy HA Biol Reprod; 1987 Apr; 36(3):658-63. PubMed ID: 3593837 [TBL] [Abstract][Full Text] [Related]
26. The role of sulfhydryl groups in contraction of vascular smooth muscle. Neering IR; Glover WE J Pharmacol Exp Ther; 1979 Feb; 208(2):335-40. PubMed ID: 216795 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity of system A and ASC transport activities to thiol-group-modifying reagents in rat liver plasma-membrane vesicles. Evidence for a direct binding of N-ethylmaleimide and iodoacetamide on A and ASC carriers. Pola E; Bertran J; Roca A; Palacín M; Zorzano A; Testar X Biochem J; 1990 Oct; 271(2):297-303. PubMed ID: 2241916 [TBL] [Abstract][Full Text] [Related]
28. [Synthesis and degradation of the phosphate transport system in Chlorella pyrenoidosa]. Jeanjean R; Ducet G Biochimie; 1974; 56(4):613-5. PubMed ID: 4424584 [No Abstract] [Full Text] [Related]
29. System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents. Chiles TC; Kilberg MS J Cell Physiol; 1986 Dec; 129(3):321-8. PubMed ID: 3023402 [TBL] [Abstract][Full Text] [Related]
30. The effect of thiol reagents on GABA transport in rat brain synaptosomes. Troeger MB; Wilson DF; Erecińska M FEBS Lett; 1984 Jun; 171(2):303-8. PubMed ID: 6327392 [TBL] [Abstract][Full Text] [Related]
31. N-Ethylmaleimide differentially inhibits substrate uptake by and ligand binding to the noradrenaline transporter. Wenge B; Bönisch H Naunyn Schmiedebergs Arch Pharmacol; 2008 May; 377(3):255-65. PubMed ID: 18357440 [TBL] [Abstract][Full Text] [Related]
32. Effects of SH-modifying reagents on the rat hepatic Ah receptor: inhibition of ligand binding and transformation, and disruption of the ligand-receptor complex. Henry EC; Kester JE; Gasiewicz TA Biochim Biophys Acta; 1988 Mar; 964(3):361-76. PubMed ID: 2831991 [TBL] [Abstract][Full Text] [Related]
33. Effect of phosphate and ionophores on (14C)-NEM incorporation in mitochondrial membranes and relationships with phosphate carrier system. Briand Y; Debise R; Durand R Biochimie; 1975; 57(6-7):787-96. PubMed ID: 1203324 [TBL] [Abstract][Full Text] [Related]
34. Effect of thiol reagents and ionizing radiation on the permeability of erythrocyte membrane for spin-labeled non-electrolytes. Gwoździński K; Bartosz G; Leyko W Radiat Environ Biophys; 1983; 22(1):53-9. PubMed ID: 6225140 [TBL] [Abstract][Full Text] [Related]
35. Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials. Siliprandi D; Toninello A; Zoccarato F; Bindoli A FEBS Lett; 1975 Mar; 51(1):15-7. PubMed ID: 1123044 [No Abstract] [Full Text] [Related]
36. Identification of a membrane protein involved in mitochondrial phosphate transport. Hadvary P; Kadenbach B Eur J Biochem; 1976 Aug; 67(2):573-81. PubMed ID: 964259 [TBL] [Abstract][Full Text] [Related]
37. Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl reagents. Lindenmayer JM; Kahn MG; Hertzmark E; Epstein DL Invest Ophthalmol Vis Sci; 1983 Jun; 24(6):710-7. PubMed ID: 6853097 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes. Azzone GF; Massari S; Pozzan T Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603 [TBL] [Abstract][Full Text] [Related]
39. Separation of phenylalanine transport events by using selective inhibitors, and identification of a specific uncoupler activity in Yersinia pestis. Smith PB; Montie TC J Bacteriol; 1975 Jun; 122(3):1053-61. PubMed ID: 1150617 [TBL] [Abstract][Full Text] [Related]
40. The effect of sulfhydryl reagents on the activity and stability of yeast ribosomes. Jakubowicz T; Paleń E; Gasior E Acta Biochim Pol; 1978; 25(1):49-59. PubMed ID: 665077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]