These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16787561)

  • 21. Analysis of osmotic stress induced Ca2+ spark termination in mammalian skeletal muscle.
    Ferrante C; Szappanos H; Csernoch L; Weisleder N
    Indian J Biochem Biophys; 2013 Oct; 50(5):411-8. PubMed ID: 24772962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A repetitive mode of activation of discrete Ca2+ release events (Ca2+ sparks) in frog skeletal muscle fibres.
    Klein MG; Lacampagne A; Schneider MF
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):391-411. PubMed ID: 10050007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium signaling in isolated skeletal muscle fibers investigated under "Silicone Voltage-Clamp" conditions.
    Collet C; Pouvreau S; Csernoch L; Allard B; Jacquemond V
    Cell Biochem Biophys; 2004; 40(2):225-36. PubMed ID: 15054224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?
    Zhou J; Launikonis BS; Ríos E; Brum G
    J Gen Physiol; 2004 Oct; 124(4):409-28. PubMed ID: 15452201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle.
    Gouadon E; Schuhmeier RP; Ursu D; Anderson AA; Treves S; Zorzato F; Lehmann-Horn F; Melzer W
    J Physiol; 2006 Apr; 572(Pt 1):269-80. PubMed ID: 16423849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation.
    DelPrincipe F; Egger M; Niggli E
    Nat Cell Biol; 1999 Oct; 1(6):323-9. PubMed ID: 10559957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.
    Martins AS; Shkryl VM; Nowycky MC; Shirokova N
    J Physiol; 2008 Jan; 586(1):197-210. PubMed ID: 17974587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks.
    Soeller C; Cannell MB
    Biophys J; 2002 May; 82(5):2396-414. PubMed ID: 11964229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered expression of triadin 95 causes parallel changes in localized Ca2+ release events and global Ca2+ signals in skeletal muscle cells in culture.
    Fodor J; Gönczi M; Sztretye M; Dienes B; Oláh T; Szabó L; Csoma E; Szentesi P; Szigeti GP; Marty I; Csernoch L
    J Physiol; 2008 Dec; 586(23):5803-18. PubMed ID: 18845610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymorphism of Ca2+ sparks evoked from in-focus Ca2+ release units in cardiac myocytes.
    Shen JX; Wang S; Song LS; Han T; Cheng H
    Biophys J; 2004 Jan; 86(1 Pt 1):182-90. PubMed ID: 14695261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [High resolution fluorescence microscopy in combination with mathematical modelling. First evidence of sub-cellular anesthetic effects on Ca2+ sparks in situ].
    Uttenweiler D; Both M; Zink W; Sinner B; Martin E; Graf BM; Fink RH
    Anaesthesist; 2003 Feb; 52(2):162-8. PubMed ID: 12624702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle.
    Sirvent P; Mercier J; Vassort G; Lacampagne A
    Biochem Biophys Res Commun; 2005 Apr; 329(3):1067-75. PubMed ID: 15752763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes.
    Xie H; Zhu PH
    Acta Pharmacol Sin; 2006 Jul; 27(7):877-87. PubMed ID: 16787572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast XYT imaging of elementary calcium release events in muscle with multifocal multiphoton microscopy and wavelet denoising and detection.
    Von Wegner F; Both M; Fink RH; Friedrich O
    IEEE Trans Med Imaging; 2007 Jul; 26(7):925-34. PubMed ID: 17649906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions.
    Nielsen JS; Sahlin K; Ørtenblad N
    Acta Physiol (Oxf); 2007 Nov; 191(3):217-28. PubMed ID: 17635412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium sparks in muscle cells: interactive procedures for automatic detection and measurements on line-scan confocal images series.
    Sebille S; Cantereau A; Vandebrouck C; Balghi H; Constantin B; Raymond G; Cognard C
    Comput Methods Programs Biomed; 2005 Jan; 77(1):57-70. PubMed ID: 15639710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered Ca2+ sparks in aging skeletal and cardiac muscle.
    Weisleder N; Ma J
    Ageing Res Rev; 2008 Jul; 7(3):177-88. PubMed ID: 18272434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two mechanisms of quantized calcium release in skeletal muscle.
    Klein MG; Cheng H; Santana LF; Jiang YH; Lederer WJ; Schneider MF
    Nature; 1996 Feb; 379(6564):455-8. PubMed ID: 8559251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.