BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16787636)

  • 1. Mitochondrial potassium channels: from pharmacology to function.
    Szewczyk A; Skalska J; Głab M; Kulawiak B; Malińska D; Koszela-Piotrowska I; Kunz WS
    Biochim Biophys Acta; 2006; 1757(5-6):715-20. PubMed ID: 16787636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial potassium channels.
    Szewczyk A; Jarmuszkiewicz W; Kunz WS
    IUBMB Life; 2009 Feb; 61(2):134-43. PubMed ID: 19165895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacology of mitochondrial potassium channels: dark side of the field.
    Szewczyk A; Kajma A; Malinska D; Wrzosek A; Bednarczyk P; Zabłocka B; Dołowy K
    FEBS Lett; 2010 May; 584(10):2063-9. PubMed ID: 20178786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative Targets for Modulators of Mitochondrial Potassium Channels.
    Wrzosek A; Gałecka S; Żochowska M; Olszewska A; Kulawiak B
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What do we not know about mitochondrial potassium channels?
    Laskowski M; Augustynek B; Kulawiak B; Koprowski P; Bednarczyk P; Jarmuszkiewicz W; Szewczyk A
    Biochim Biophys Acta; 2016 Aug; 1857(8):1247-1257. PubMed ID: 26951942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial mitochondria as a possible target for potassium channel modulators.
    Głab M; Lojek A; Wrzosek A; Dołowy K; Szewczyk A
    Pharmacol Rep; 2006; 58 Suppl():89-95. PubMed ID: 17332677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mitochondrial ion channels].
    Skalska J; Debska-Vielhaber G; Głab M; Kulawiak B; Malińska D; Koszela-Piotrowska I; Bednarczyk P; Dołowy K; Szewczyk A
    Postepy Biochem; 2006; 52(2):137-44. PubMed ID: 17078503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock.
    Kuo JH; Chen SJ; Shih CC; Lue WM; Wu CC
    Shock; 2009 Jul; 32(1):74-9. PubMed ID: 18948850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inhibitors and activators of ATP-regulated K+ channel on mitochondrial potassium uniport.
    Szewczyk A; Pikuła S; Nałecz MJ
    Biochem Mol Biol Int; 1996 Mar; 38(3):477-84. PubMed ID: 8829606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-beating HL-1 cells for confocal microscopy: application to mitochondrial functions during cardiac preconditioning.
    Pelloux S; Robillard J; Ferrera R; Bilbaut A; Ojeda C; Saks V; Ovize M; Tourneur Y
    Prog Biophys Mol Biol; 2006; 90(1-3):270-98. PubMed ID: 16140363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress.
    Teshima Y; Akao M; Li RA; Chong TH; Baumgartner WA; Johnston MV; Marbán E
    Stroke; 2003 Jul; 34(7):1796-802. PubMed ID: 12791941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks.
    Xi Q; Cheranov SY; Jaggar JH
    Circ Res; 2005 Aug; 97(4):354-62. PubMed ID: 16020754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG-1a.
    Körper S; Nolte F; Rojewski MT; Thiel E; Schrezenmeier H
    Exp Hematol; 2003 Sep; 31(9):815-23. PubMed ID: 12962728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line.
    Siemen D; Loupatatzis C; Borecky J; Gulbins E; Lang F
    Biochem Biophys Res Commun; 1999 Apr; 257(2):549-54. PubMed ID: 10198249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel openers as potential therapeutic weapons in ion channel disease.
    Lawson K
    Kidney Int; 2000 Mar; 57(3):838-45. PubMed ID: 10720937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling pathways targeting mitochondrial potassium channels.
    Rotko D; Kunz WS; Szewczyk A; Kulawiak B
    Int J Biochem Cell Biol; 2020 Aug; 125():105792. PubMed ID: 32574707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacology of voltage-gated and calcium-activated potassium channels.
    Kaczorowski GJ; Garcia ML
    Curr Opin Chem Biol; 1999 Aug; 3(4):448-58. PubMed ID: 10419851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane potassium currents in human radial artery and their regulation by nitric oxide donor.
    Zhang Y; Tazzeo T; Chu V; Janssen LJ
    Cardiovasc Res; 2006 Jul; 71(2):383-92. PubMed ID: 16716281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.