BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16787700)

  • 1. Decolourization of azo dyes using magnesium-palladium system.
    Patel R; Suresh S
    J Hazard Mater; 2006 Oct; 137(3):1729-41. PubMed ID: 16787700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on dechlorination of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) using magnesium/palladium bimetallic system.
    Gautam SK; Suresh S
    J Hazard Mater; 2007 Jan; 139(1):146-53. PubMed ID: 16846688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes.
    Singh V; Sharma AK; Tripathi DN; Sanghi R
    J Hazard Mater; 2009 Jan; 161(2-3):955-66. PubMed ID: 18547715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation for enhanced decolourization and degradation of Reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS.
    Sheth NT; Dave SR
    Biodegradation; 2009 Nov; 20(6):827-36. PubMed ID: 19517253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reduction of azo dyes by the intestinal microflora.
    Chung KT; Stevens SE; Cerniglia CE
    Crit Rev Microbiol; 1992; 18(3):175-90. PubMed ID: 1554423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure.
    Khataee AR; Pons MN; Zahraa O
    J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR.
    Prasad SS; Aikat K
    Environ Technol; 2014; 35(5-8):956-65. PubMed ID: 24645479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced oxidation processes in azo dye wastewater treatment.
    Papić S; Koprivanac N; Bozić AL; Vujević D; Dragicević SK; Kusić H; Peternel I
    Water Environ Res; 2006 Jun; 78(6):572-9. PubMed ID: 16894983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron.
    Hou M; Li F; Liu X; Wang X; Wan H
    J Hazard Mater; 2007 Jun; 145(1-2):305-14. PubMed ID: 17166657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste.
    Abdelmalek F; Gharbi S; Benstaali B; Addou A; Brisset JL
    Water Res; 2004 May; 38(9):2338-46. PubMed ID: 15142795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: determination of column capacity.
    Aksu Z; Cağatay SS; Gönen F
    J Hazard Mater; 2007 May; 143(1-2):362-71. PubMed ID: 17070992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ozonation of azo dye in a semi-batch reactor: a determination of the molecular and radical contributions.
    López-López A; Pic JS; Debellefontaine H
    Chemosphere; 2007 Feb; 66(11):2120-6. PubMed ID: 17166557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.
    Moussavi G; Mahmoudi M
    J Hazard Mater; 2009 Sep; 168(2-3):806-12. PubMed ID: 19303210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes.
    Harrelkas F; Paulo A; Alves MM; El Khadir L; Zahraa O; Pons MN; van der Zee FP
    Chemosphere; 2008 Aug; 72(11):1816-22. PubMed ID: 18585754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of total non-sulphonated aromatic amines in tartrazine, sunset yellow FCF and allura red by reduction and derivatization followed by high-performance liquid chromatography.
    Lancaster FE; Lawrence JF
    Food Addit Contam; 1991; 8(3):249-63. PubMed ID: 1778264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination of chlorophenols using magnesium-palladium bimetallic system.
    Patel UD; Suresh S
    J Hazard Mater; 2007 Aug; 147(1-2):431-8. PubMed ID: 17300867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of decolorization of reactive microorganisms isolated from various sources.
    Padamavathy S; Sandhya S; Swaminathan K; Subrahmanyam YV; Kaul SN
    J Environ Sci (China); 2003 Sep; 15(5):628-32. PubMed ID: 14562923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. Reactive Red 120 during ozonation.
    Zhang F; Yediler A; Liang X
    Chemosphere; 2007 Mar; 67(4):712-7. PubMed ID: 17188325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brevibacillus laterosporus MTCC 2298: a potential azo dye degrader.
    Gomare SS; Govindwar SP
    J Appl Microbiol; 2009 Mar; 106(3):993-1004. PubMed ID: 19187152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of reactive dyes and simulated dyebath wastewater.
    Joshi P; Purohit J; Neti NR
    J Environ Sci Eng; 2006 Oct; 48(4):293-8. PubMed ID: 18179125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.