These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 16787940)
1. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. Puntheeranurak T; Wildling L; Gruber HJ; Kinne RK; Hinterdorfer P J Cell Sci; 2006 Jul; 119(Pt 14):2960-7. PubMed ID: 16787940 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Puntheeranurak T; Wimmer B; Castaneda F; Gruber HJ; Hinterdorfer P; Kinne RK Biochemistry; 2007 Mar; 46(10):2797-804. PubMed ID: 17302432 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. Subramanian S; Glitz P; Kipp H; Kinne RK; Castaneda F J Cell Biochem; 2009 Feb; 106(3):444-52. PubMed ID: 19115253 [TBL] [Abstract][Full Text] [Related]
4. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
5. Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. Puntheeranurak T; Kasch M; Xia X; Hinterdorfer P; Kinne RK J Biol Chem; 2007 Aug; 282(35):25222-30. PubMed ID: 17616521 [TBL] [Abstract][Full Text] [Related]
6. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561. Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452 [TBL] [Abstract][Full Text] [Related]
7. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. Walgren RA; Lin JT; Kinne RK; Walle T J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831 [TBL] [Abstract][Full Text] [Related]
8. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence. Xia X; Lin JT; Kinne RK Biochemistry; 2003 May; 42(20):6115-20. PubMed ID: 12755613 [TBL] [Abstract][Full Text] [Related]
9. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence. Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400 [TBL] [Abstract][Full Text] [Related]
10. Forces and dynamics of glucose and inhibitor binding to sodium glucose co-transporter SGLT1 studied by single molecule force spectroscopy. Neundlinger I; Puntheeranurak T; Wildling L; Rankl C; Wang LX; Gruber HJ; Kinne RK; Hinterdorfer P J Biol Chem; 2014 Aug; 289(31):21673-83. PubMed ID: 24962566 [TBL] [Abstract][Full Text] [Related]
11. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207 [TBL] [Abstract][Full Text] [Related]
12. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
13. Sodium-dependent reorganization of the sugar-binding site of SGLT1. Hirayama BA; Loo DD; Díez-Sampedro A; Leung DW; Meinild AK; Lai-Bing M; Turk E; Wright EM Biochemistry; 2007 Nov; 46(46):13391-406. PubMed ID: 17960916 [TBL] [Abstract][Full Text] [Related]
14. Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Wielert-Badt S; Hinterdorfer P; Gruber HJ; Lin JT; Badt D; Wimmer B; Schindler H; Kinne RK Biophys J; 2002 May; 82(5):2767-74. PubMed ID: 11964262 [TBL] [Abstract][Full Text] [Related]
15. C-terminal loop 13 of Na+/glucose cotransporter 1 contains both stereospecific and non-stereospecific sugar interaction sites. Wimmer B; Raja M; Hinterdorfer P; Gruber HJ; Kinne RK J Biol Chem; 2009 Jan; 284(2):983-91. PubMed ID: 19010790 [TBL] [Abstract][Full Text] [Related]
16. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M; Tomasevic J; Wright EM Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248 [TBL] [Abstract][Full Text] [Related]
17. Probing transmembrane topology of the high-affinity Sodium/Glucose cotransporter (SGLT1) with histidine-tagged mutants. Lin J; Kormanec J; Homerová D; Kinne RK J Membr Biol; 1999 Aug; 170(3):243-52. PubMed ID: 10441667 [TBL] [Abstract][Full Text] [Related]
18. Interaction between single molecules of Mac-1 and ICAM-1 in living cells: an atomic force microscopy study. Yang H; Yu J; Fu G; Shi X; Xiao L; Chen Y; Fang X; He C Exp Cell Res; 2007 Oct; 313(16):3497-504. PubMed ID: 17803991 [TBL] [Abstract][Full Text] [Related]
19. Role of hydration in the conformational transitions between unliganded and liganded forms of loop 13 of the Na+/glucose cotransporter 1. Xia X; Wang G; Fang H Biochem Biophys Res Commun; 2004 Mar; 315(4):1018-24. PubMed ID: 14985114 [TBL] [Abstract][Full Text] [Related]
20. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Kumar A; Tyagi NK; Kinne RK Biophys Chem; 2007 Apr; 127(1-2):69-77. PubMed ID: 17222499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]