BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 16788062)

  • 21. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Residue Leu-641 of Acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the Protein acetyltransferase enzyme of Salmonella enterica.
    Starai VJ; Gardner JG; Escalante-Semerena JC
    J Biol Chem; 2005 Jul; 280(28):26200-5. PubMed ID: 15899897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylation of mitochondrial proteins.
    Hirschey MD; Shimazu T; Huang JY; Verdin E
    Methods Enzymol; 2009; 457():137-47. PubMed ID: 19426866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific and kinetic characterization of enzymatic and nonenzymatic protein acetylation in bacteria.
    Wang MM; You D; Ye BC
    Sci Rep; 2017 Nov; 7(1):14790. PubMed ID: 29093482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants within the C-terminal domain of Streptomyces lividans acetyl-CoA synthetase that block acetylation of its active site lysine in vitro by the protein acetyltransferase (Pat) enzyme.
    Tucker AC; Escalante-Semerena JC
    PLoS One; 2014; 9(6):e99817. PubMed ID: 24918787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.
    Bharathi SS; Zhang Y; Mohsen AW; Uppala R; Balasubramani M; Schreiber E; Uechi G; Beck ME; Rardin MJ; Vockley J; Verdin E; Gibson BW; Hirschey MD; Goetzman ES
    J Biol Chem; 2013 Nov; 288(47):33837-33847. PubMed ID: 24121500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.
    Zhang Y; Bharathi SS; Rardin MJ; Uppala R; Verdin E; Gibson BW; Goetzman ES
    PLoS One; 2015; 10(3):e0122297. PubMed ID: 25811481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
    Hirschey MD; Shimazu T; Huang JY; Schwer B; Verdin E
    Cold Spring Harb Symp Quant Biol; 2011; 76():267-77. PubMed ID: 22114326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3.
    Kwon S; Seok S; Yau P; Li X; Kemper B; Kemper JK
    J Biol Chem; 2017 Oct; 292(42):17312-17323. PubMed ID: 28808064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10.
    Yang Y; Cimen H; Han MJ; Shi T; Deng JH; Koc H; Palacios OM; Montier L; Bai Y; Tong Q; Koc EC
    J Biol Chem; 2010 Mar; 285(10):7417-29. PubMed ID: 20042612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.
    Lombard DB; Alt FW; Cheng HL; Bunkenborg J; Streeper RS; Mostoslavsky R; Kim J; Yancopoulos G; Valenzuela D; Murphy A; Yang Y; Chen Y; Hirschey MD; Bronson RT; Haigis M; Guarente LP; Farese RV; Weissman S; Verdin E; Schwer B
    Mol Cell Biol; 2007 Dec; 27(24):8807-14. PubMed ID: 17923681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
    Yang W; Nagasawa K; Münch C; Xu Y; Satterstrom K; Jeong S; Hayes SD; Jedrychowski MP; Vyas FS; Zaganjor E; Guarani V; Ringel AE; Gygi SP; Harper JW; Haigis MC
    Cell; 2016 Nov; 167(4):985-1000.e21. PubMed ID: 27881304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acs is essential for propionate utilization in Escherichia coli.
    Liu F; Gu J; Wang X; Zhang XE; Deng J
    Biochem Biophys Res Commun; 2014 Jul; 449(3):272-7. PubMed ID: 24835953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
    Hirschey MD; Shimazu T; Goetzman E; Jing E; Schwer B; Lombard DB; Grueter CA; Harris C; Biddinger S; Ilkayeva OR; Stevens RD; Li Y; Saha AK; Ruderman NB; Bain JR; Newgard CB; Farese RV; Alt FW; Kahn CR; Verdin E
    Nature; 2010 Mar; 464(7285):121-5. PubMed ID: 20203611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CobB1 deacetylase activity in Streptomyces coelicolor.
    Mikulik K; Felsberg J; Kudrnáčová E; Bezoušková S; Setinová D; Stodůlková E; Zídková J; Zídek V
    Biochem Cell Biol; 2012 Apr; 90(2):179-87. PubMed ID: 22300453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fasting-induced hypothermia and reduced energy production in mice lacking acetyl-CoA synthetase 2.
    Sakakibara I; Fujino T; Ishii M; Tanaka T; Shimosawa T; Miura S; Zhang W; Tokutake Y; Yamamoto J; Awano M; Iwasaki S; Motoike T; Okamura M; Inagaki T; Kita K; Ezaki O; Naito M; Kuwaki T; Chohnan S; Yamamoto TT; Hammer RE; Kodama T; Yanagisawa M; Sakai J
    Cell Metab; 2009 Feb; 9(2):191-202. PubMed ID: 19187775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli.
    Zhao K; Chai X; Marmorstein R
    J Mol Biol; 2004 Mar; 337(3):731-41. PubMed ID: 15019790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart.
    Fernandes J; Weddle A; Kinter CS; Humphries KM; Mather T; Szweda LI; Kinter M
    Biochemistry; 2015 Jun; 54(25):4008-18. PubMed ID: 26061789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.