BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16788175)

  • 1. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen.
    Spence C; Wells WG; Smith CJ
    J Bacteriol; 2006 Jul; 188(13):4663-72. PubMed ID: 16788175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate Anaerobe bacteroides fragilis.
    Rocha ER; Smith CJ
    J Bacteriol; 1999 Sep; 181(18):5701-10. PubMed ID: 10482511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis.
    Herren CD; Rocha ER; Smith CJ
    Gene; 2003 Oct; 316():167-75. PubMed ID: 14563563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes.
    Cho KH; Cho D; Wang GR; Salyers AA
    J Bacteriol; 2001 Dec; 183(24):7198-205. PubMed ID: 11717279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron.
    D'Elia JN; Salyers AA
    J Bacteriol; 1996 Dec; 178(24):7180-6. PubMed ID: 8955400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron.
    Reeves AR; Wang GR; Salyers AA
    J Bacteriol; 1997 Feb; 179(3):643-9. PubMed ID: 9006015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of BmoR, a MarR Family Regulator, in the survival of Bacteroides fragilis during oxidative stress.
    Teixeira FL; Silva DN; Pauer H; Ferreira LQ; Ferreira Ede O; Domingues RM; Lobo LA
    Int J Med Microbiol; 2013 Dec; 303(8):443-8. PubMed ID: 23827141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB.
    Robertson KP; Smith CJ; Gough AM; Rocha ER
    Infect Immun; 2006 Apr; 74(4):2304-16. PubMed ID: 16552061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic-type ribonucleotide reductase in the anaerobe Bacteroides fragilis.
    Smalley D; Rocha ER; Smith CJ
    J Bacteriol; 2002 Feb; 184(4):895-903. PubMed ID: 11807048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recA operon: A novel stress response gene cluster in Bacteroides fragilis.
    Nicholson SA; Smalley D; Smith CJ; Abratt VR
    Res Microbiol; 2014 May; 165(4):290-9. PubMed ID: 24703997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Bacteriodes fragilis katB mRNA by oxidative stress and carbon limitation.
    Rocha ER; Smith CJ
    J Bacteriol; 1997 Nov; 179(22):7033-9. PubMed ID: 9371450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Batl (Bacteroides aerotolerance) operon in Bacteroides fragilis: isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems.
    Tang YP; Dallas MM; Malamy MH
    Mol Microbiol; 1999 Apr; 32(1):139-49. PubMed ID: 10216867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence.
    Sund CJ; Rocha ER; Tzianabos AO; Wells WG; Gee JM; Reott MA; O'Rourke DP; Smith CJ
    Mol Microbiol; 2008 Jan; 67(1):129-42. PubMed ID: 18047569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of the Bacteroides fragilis ferritin gene (ftnA) by redox stress.
    Rocha ER; Smith CJ
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2125-2134. PubMed ID: 15256555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.
    Rocha ER; Tzianabos AO; Smith CJ
    J Bacteriol; 2007 Nov; 189(22):8015-23. PubMed ID: 17873045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections.
    Cao Y; Rocha ER; Smith CJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12901-6. PubMed ID: 25139987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis.
    Meehan BM; Baughn AD; Gallegos R; Malamy MH
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12153-8. PubMed ID: 22778399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron.
    Tancula E; Feldhaus MJ; Bedzyk LA; Salyers AA
    J Bacteriol; 1992 Sep; 174(17):5609-16. PubMed ID: 1512196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Six
    Parker AC; Seals NL; Baccanale CL; Rocha ER
    Infect Immun; 2022 Jan; 90(1):e0046921. PubMed ID: 34662212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dps and DpsL Mediate Survival In Vitro and In Vivo during the Prolonged Oxidative Stress Response in Bacteroides fragilis.
    Betteken MI; Rocha ER; Smith CJ
    J Bacteriol; 2015 Oct; 197(20):3329-38. PubMed ID: 26260459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.