BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16788185)

  • 1. Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense.
    Stephens BB; Loar SN; Alexandre G
    J Bacteriol; 2006 Jul; 188(13):4759-68. PubMed ID: 16788185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CheR/CheB fusion protein is involved in cyst cell development and chemotaxis in Azospirillum brasilense Sp7.
    Wu L; Cui Y; Hong Y; Chen S
    Microbiol Res; 2011 Dec; 166(8):606-17. PubMed ID: 21232929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Shah DS; Porter SL; Mantotta JC; Craig TJ; Verdult PH; Jones H; Armitage JP
    J Bacteriol; 2001 Dec; 183(24):7135-44. PubMed ID: 11717272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense.
    Bible AN; Stephens BB; Ortega DR; Xie Z; Alexandre G
    J Bacteriol; 2008 Oct; 190(19):6365-75. PubMed ID: 18641130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni.
    Kanungpean D; Kakuda T; Takai S
    Microbiology (Reading); 2011 May; 157(Pt 5):1279-1289. PubMed ID: 21292743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense.
    O'Neal L; Ryu MH; Gomelsky M; Alexandre G
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28264994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence for CheB- and CheR-dependent chemotaxis system in A. tumefaciens toward acetosyringone.
    Harighi B
    Microbiol Res; 2009; 164(6):634-41. PubMed ID: 19231145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell.
    Uchida Y; Hamamoto T; Che YS; Takahashi H; Parkinson JS; Ishijima A; Fukuoka H
    J Bacteriol; 2022 Dec; 204(12):e0027822. PubMed ID: 36448786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria.
    Hauwaerts D; Alexandre G; Das SK; Vanderleyden J; Zhulin IB
    FEMS Microbiol Lett; 2002 Feb; 208(1):61-7. PubMed ID: 11934495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylation-Independent Chemotaxis Systems Are the Norm for Gastric-Colonizing
    Liu X; Ottemann KM
    J Bacteriol; 2022 Sep; 204(9):e0023122. PubMed ID: 35972258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.
    Mukherjee T; Kumar D; Burriss N; Xie Z; Alexandre G
    J Bacteriol; 2016 Jun; 198(12):1764-1772. PubMed ID: 27068592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for two chemosensory pathways in Rhodobacter sphaeroides.
    Hamblin PA; Maguire BA; Grishanin RN; Armitage JP
    Mol Microbiol; 1997 Dec; 26(5):1083-96. PubMed ID: 9426144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of aerotactic response in Escherichia coli deficient in cheB protein methylesterase.
    Dang CV; Niwano M; Ryu J; Taylor BL
    J Bacteriol; 1986 Apr; 166(1):275-80. PubMed ID: 3007436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of the cheB function for sensory adaptation in Escherichia coli.
    Yonekawa H; Hayashi H; Parkinson JS
    J Bacteriol; 1983 Dec; 156(3):1228-35. PubMed ID: 6358193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB.
    Lybarger SR; Maddock JR
    J Bacteriol; 1999 Sep; 181(17):5527-9. PubMed ID: 10464232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of the second messenger c-di-GMP into the chemotactic signaling pathway.
    Russell MH; Bible AN; Fang X; Gooding JR; Campagna SR; Gomelsky M; Alexandre G
    mBio; 2013 Mar; 4(2):e00001-13. PubMed ID: 23512960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation-independent aerotaxis mediated by the Escherichia coli Aer protein.
    Bibikov SI; Miller AC; Gosink KK; Parkinson JS
    J Bacteriol; 2004 Jun; 186(12):3730-7. PubMed ID: 15175286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing Chemotaxis and Related Behaviors of Azospirillum Brasilense.
    O'Neal L; Mukherjee T; Alexandre G
    Curr Protoc Microbiol; 2018 Feb; 48():3E.3.1-3E.3.11. PubMed ID: 29512118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational processing of methyl-accepting chemotaxis proteins in Escherichia coli.
    Sherris D; Parkinson JS
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6051-5. PubMed ID: 6458812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling aerotaxis band formation in Azospirillum brasilense.
    Elmas M; Alexiades V; O'Neal L; Alexandre G
    BMC Microbiol; 2019 May; 19(1):101. PubMed ID: 31101077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.