These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 16789818)

  • 1. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.
    Carrasco Pro S; Zimic M; Nielsen M
    Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NetMHCpan, a method for MHC class I binding prediction beyond humans.
    Hoof I; Peters B; Sidney J; Pedersen LE; Sette A; Lund O; Buus S; Nielsen M
    Immunogenetics; 2009 Jan; 61(1):1-13. PubMed ID: 19002680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
    Zhang H; Lundegaard C; Nielsen M
    Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.
    Lundegaard C; Lamberth K; Harndahl M; Buus S; Lund O; Nielsen M
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W509-12. PubMed ID: 18463140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models.
    Liu W; Meng X; Xu Q; Flower DR; Li T
    BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy.
    Mattsson AH; Kringelum JV; Garde C; Nielsen M
    HLA; 2016 Dec; 88(6):287-292. PubMed ID: 27762504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules.
    Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S
    J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution.
    Jiang L; Yu H; Li J; Tang J; Guo Y; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of genetic search in derivation of matrix models of peptide binding to MHC molecules.
    Brusic V; Schönbach C; Takiguchi M; Ciesielski V; Harrison LC
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():75-83. PubMed ID: 9322018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.