These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 16789818)

  • 21. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction.
    O'Donnell TJ; Rubinsteyn A; Bonsack M; Riemer AB; Laserson U; Hammerbacher J
    Cell Syst; 2018 Jul; 7(1):129-132.e4. PubMed ID: 29960884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MHCSeqNet: a deep neural network model for universal MHC binding prediction.
    Phloyphisut P; Pornputtapong N; Sriswasdi S; Chuangsuwanich E
    BMC Bioinformatics; 2019 May; 20(1):270. PubMed ID: 31138107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles.
    Luo F; Gao Y; Zhu Y; Liu J
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S1. PubMed ID: 23815611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.
    Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J
    Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study.
    Soam SS; Bhasker B; Mishra BN
    Adv Exp Med Biol; 2011; 696():223-9. PubMed ID: 21431562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MHC motif viewer.
    Rapin N; Hoof I; Lund O; Nielsen M
    Immunogenetics; 2008 Dec; 60(12):759-65. PubMed ID: 18766337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implementing the modular MHC model for predicting peptide binding.
    DeLuca DS; Blasczyk R
    Methods Mol Biol; 2007; 409():261-71. PubMed ID: 18450006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.
    Bhasin M; Raghava GP
    J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications.
    Bui HH; Sidney J; Peters B; Sathiamurthy M; Sinichi A; Purton KA; Mothé BR; Chisari FV; Watkins DI; Sette A
    Immunogenetics; 2005 Jun; 57(5):304-14. PubMed ID: 15868141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach.
    Wang P; Sidney J; Dow C; Mothé B; Sette A; Peters B
    PLoS Comput Biol; 2008 Apr; 4(4):e1000048. PubMed ID: 18389056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A geometric and algebraic view of MHC-peptide complexes and their binding properties.
    Cano P; Fan B
    BMC Struct Biol; 2001; 1():2. PubMed ID: 11472639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An automated benchmarking platform for MHC class II binding prediction methods.
    Andreatta M; Trolle T; Yan Z; Greenbaum JA; Peters B; Nielsen M
    Bioinformatics; 2018 May; 34(9):1522-1528. PubMed ID: 29281002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting affinity and specificity of antigenic peptide binding to major histocompatibility class I molecules.
    Sieker F; May A; Zacharias M
    Curr Protein Pept Sci; 2009 Jun; 10(3):286-96. PubMed ID: 19519456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.