These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 16789830)

  • 1. Genome-wide analysis of gene expression during early Arabidopsis flower development.
    Wellmer F; Alves-Ferreira M; Dubois A; Riechmann JL; Meyerowitz EM
    PLoS Genet; 2006 Jul; 2(7):e117. PubMed ID: 16789830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation.
    Ryan PT; Ó'Maoiléidigh DS; Drost HG; Kwaśniewska K; Gabel A; Grosse I; Graciet E; Quint M; Wellmer F
    BMC Genomics; 2015 Jul; 16(1):488. PubMed ID: 26126740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis.
    Zhang X; Feng B; Zhang Q; Zhang D; Altman N; Ma H
    Plant Mol Biol; 2005 Jun; 58(3):401-19. PubMed ID: 16021403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis.
    Hu W; Wang Y; Bowers C; Ma H
    Plant Mol Biol; 2003 Nov; 53(4):545-63. PubMed ID: 15010618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orchestration of floral initiation by APETALA1.
    Kaufmann K; Wellmer F; Muiño JM; Ferrier T; Wuest SE; Kumar V; Serrano-Mislata A; Madueño F; Krajewski P; Meyerowitz EM; Angenent GC; Riechmann JL
    Science; 2010 Apr; 328(5974):85-9. PubMed ID: 20360106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of spatial gene expression in Arabidopsis flowers.
    Wellmer F; Riechmann JL; Alves-Ferreira M; Meyerowitz EM
    Plant Cell; 2004 May; 16(5):1314-26. PubMed ID: 15100403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene networks controlling Arabidopsis thaliana flower development.
    Ó'Maoiléidigh DS; Graciet E; Wellmer F
    New Phytol; 2014 Jan; 201(1):16-30. PubMed ID: 23952532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis.
    Guo S; Sun B; Looi LS; Xu Y; Gan ES; Huang J; Ito T
    Plant Cell Physiol; 2015 May; 56(5):830-42. PubMed ID: 25746984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.
    Ó'Maoiléidigh DS; Thomson B; Raganelli A; Wuest SE; Ryan PT; Kwaśniewska K; Carles CC; Graciet E; Wellmer F
    Plant J; 2015 Jul; 83(2):344-58. PubMed ID: 25990192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis.
    Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X
    BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.
    Chae E; Tan QK; Hill TA; Irish VF
    Development; 2008 Apr; 135(7):1235-45. PubMed ID: 18287201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation.
    Wagner D; Wellmer F; Dilks K; William D; Smith MR; Kumar PP; Riechmann JL; Greenland AJ; Meyerowitz EM
    Plant J; 2004 Jul; 39(2):273-82. PubMed ID: 15225291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
    Carles CC; Choffnes-Inada D; Reville K; Lertpiriyapong K; Fletcher JC
    Development; 2005 Mar; 132(5):897-911. PubMed ID: 15673576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics.
    Engelhorn J; Wellmer F; Carles CC
    Methods Mol Biol; 2018; 1675():271-296. PubMed ID: 29052197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development.
    Krizek BA
    J Exp Bot; 2015 Aug; 66(15):4537-49. PubMed ID: 25956884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specification of floral organs in Arabidopsis.
    Wellmer F; Graciet E; Riechmann JL
    J Exp Bot; 2014 Jan; 65(1):1-9. PubMed ID: 24277279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies.
    Zahn LM; Ma X; Altman NS; Zhang Q; Wall PK; Tian D; Gibas CJ; Gharaibeh R; Leebens-Mack JH; Depamphilis CW; Ma H
    Genome Biol; 2010; 11(10):R101. PubMed ID: 20950453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.