BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16789843)

  • 1. Photoreactions of cytochrome C oxidase.
    Winterle JS; Einarsdóttir O
    Photochem Photobiol; 2006; 82(3):711-9. PubMed ID: 16789843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction.
    Konev SV; Beljanovich LM; Rudenok AN
    Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of reduction of heme a and Cu(A) on the oxidized catalytic center of cytochrome c oxidase: insight from organic solvents.
    Fabian M; Jancura D; Bona M; Musatov A; Baran M; Palmer G
    Biochemistry; 2006 Apr; 45(13):4277-83. PubMed ID: 16566602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives.
    Kotlyar AB; Borovok N; Hazani M
    Biochemistry; 1997 Dec; 36(50):15828-33. PubMed ID: 9398314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex.
    Das TK; Mazumdar S
    Biopolymers; 2000; 57(5):316-22. PubMed ID: 10958323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase.
    Parul D; Palmer G; Fabian M
    Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced spectral changes in fully oxidized cytochrome c oxidase in the presence of oxygen.
    Brooks JL; Sucheta A; Einarsdóttir O
    Biochemistry; 1997 May; 36(21):6336-42. PubMed ID: 9174348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation and assignment of peroxy and ferryl intermediates in the reduction of dioxygen to water by cytochrome c oxidase.
    Morgan JE; Verkhovsky MI; Wikström M
    Biochemistry; 1996 Sep; 35(38):12235-40. PubMed ID: 8823156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the protein in internal electron transfer to the catalytic center of cytochrome c oxidase.
    Antalik M; Jancura D; Palmer G; Fabian M
    Biochemistry; 2005 Nov; 44(45):14881-9. PubMed ID: 16274235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distal Cu ion protects synthetic heme/Cu analogues of cytochrome oxidase against inhibition by CO and cyanide.
    Collman JP; Boulatov R; Shiryaeva IM; Sunderland CJ
    Angew Chem Int Ed Engl; 2002 Nov; 41(21):4139-42. PubMed ID: 12412108
    [No Abstract]   [Full Text] [Related]  

  • 14. Redox state of peroxy and ferryl intermediates in cytochrome c oxidase catalysis.
    Fabian M; Palmer G
    Biochemistry; 1999 May; 38(19):6270-5. PubMed ID: 10320356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of the His-heme Fe2+-NO species in the reduction of NO to N2O by ba3-oxidase from thermus thermophilus.
    Pinakoulaki E; Ohta T; Soulimane T; Kitagawa T; Varotsis C
    J Am Chem Soc; 2005 Nov; 127(43):15161-7. PubMed ID: 16248657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reduction of cytochrome c by NADH induced by light].
    Ferri A; Bartocci C; Maldotti A; Carassiti V
    Boll Soc Ital Biol Sper; 1985 Mar; 61(3):327-34. PubMed ID: 2992542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman study on photoreduction of cytochrome c oxidase: distinction of cytochromes a and a3 in the intermediate oxidation states.
    Ogura T; Yoshikawa S; Kitagawa T
    Biochemistry; 1985 Dec; 24(26):7746-52. PubMed ID: 3004564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude analysis of single-wavelength time-dependent absorption data does not support the conventional sequential mechanism for the reduction of dioxygen to water catalyzed by bovine heart cytochrome c oxidase.
    Szundi I; Cappuccio J; Einarsdóttir O
    Biochemistry; 2004 Dec; 43(50):15746-58. PubMed ID: 15595830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.