BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16789843)

  • 21. A new ruthenium complex to study single-electron reduction of the pulsed O(H) state of detergent-solubilized cytochrome oxidase.
    Brand SE; Rajagukguk S; Ganesan K; Geren L; Fabian M; Han D; Gennis RB; Durham B; Millett F
    Biochemistry; 2007 Dec; 46(50):14610-8. PubMed ID: 18027981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intramolecular electron transfer processes in Cu(B)-deficient cytochrome bo studied by pulse radiolysis.
    Kobayashi K; Tagawa S; Mogi T
    J Biochem; 2009 May; 145(5):685-91. PubMed ID: 19218360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation.
    Karu TI; Pyatibrat LV; Kolyakov SF; Afanasyeva NI
    J Photochem Photobiol B; 2005 Nov; 81(2):98-106. PubMed ID: 16125966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidity of a Cu-bound histidine in the binuclear center of cytochrome C oxidase.
    Fadda E; Chakrabarti N; Pomès R
    J Phys Chem B; 2005 Dec; 109(47):22629-40. PubMed ID: 16853946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of calcium ions on electron transfer between hemes a and a(3) in cytochrome c oxidase.
    Vygodina TV; Dyuba AV; Konstantinov AA
    Biochemistry (Mosc); 2012 Aug; 77(8):901-9. PubMed ID: 22860912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chapter 28 Use of ruthenium photoreduction techniques to study electron transfer in cytochrome oxidase.
    Geren L; Durham B; Millett F
    Methods Enzymol; 2009; 456():507-20. PubMed ID: 19348907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins.
    Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR
    Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A functional model of the cytochrome c oxidase active site: unique conversion of a heme-mu-peroxo-Cu(II) intermediate into heme- superoxo/Cu(I).
    Liu JG; Naruta Y; Tani F
    Angew Chem Int Ed Engl; 2005 Mar; 44(12):1836-40. PubMed ID: 15723432
    [No Abstract]   [Full Text] [Related]  

  • 30. Modulation of the electron-proton coupling at cytochrome a by the ligation of the oxidized catalytic center in bovine cytochrome c oxidase.
    Kopcova K; Mikulova L; Pechova I; Sztachova T; Cizmar E; Jancura D; Fabian M
    Biochim Biophys Acta Bioenerg; 2020 Sep; 1861(9):148237. PubMed ID: 32485159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive auto-photoreduction used as a tool for studying structural changes in heme-copper oxidases by FTIR spectroscopy.
    Bettinger K; Prutsch A; Vogtt K; Lübben M
    Biophys J; 2004 May; 86(5):3230-40. PubMed ID: 15111436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase.
    Yoshioka Y; Satoh H; Mitani M
    J Inorg Biochem; 2007 Oct; 101(10):1410-27. PubMed ID: 17662458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrocatalytic O2 reduction by synthetic analogues of the heme/Cu site of cytochrome oxidase incorporated in a lipid film.
    Collman JP; Boulatov R
    Angew Chem Int Ed Engl; 2002 Sep; 41(18):3487-9. PubMed ID: 12298074
    [No Abstract]   [Full Text] [Related]  

  • 34. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase.
    Collman JP; Decréau RA
    Chem Commun (Camb); 2008 Nov; (41):5065-76. PubMed ID: 18956030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3.
    Farver O; Chen Y; Fee JA; Pecht I
    FEBS Lett; 2006 Jun; 580(14):3417-21. PubMed ID: 16712843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm.
    Karu TI; Pyatibrat LV; Kolyakov SF; Afanasyeva NI
    Photomed Laser Surg; 2008 Dec; 26(6):593-9. PubMed ID: 19099388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase.
    Musatov A
    Free Radic Biol Med; 2006 Jul; 41(2):238-46. PubMed ID: 16814104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comment on "Acidity of a Cu-bound histidine in the binuclear center of cytochrome c oxidase".
    Stuchebrukhov AA; Popovic DM
    J Phys Chem B; 2006 Aug; 110(34):17286-7; discussion 17288-9. PubMed ID: 16928028
    [No Abstract]   [Full Text] [Related]  

  • 39. Further insights into the spectroscopic properties, electronic structure, and kinetics of formation of the heme-peroxo-copper complex [(F8TPP)FeIII-(O2(2-)-CuII(TMPA)]+.
    Ghiladi RA; Chufan EE; del Río D; Solomon EI; Krebs C; Huynh BH; Huang HW; Moënne-Loccoz P; Kaderli S; Honecker M; Zuberbühler AD; Marzilli L; Cotter RJ; Karlin KD
    Inorg Chem; 2007 May; 46(10):3889-902. PubMed ID: 17444630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase.
    Mason MG; Nicholls P; Wilson MT; Cooper CE
    Proc Natl Acad Sci U S A; 2006 Jan; 103(3):708-13. PubMed ID: 16407136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.