These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 16790052)
1. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV; Wu CH BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052 [TBL] [Abstract][Full Text] [Related]
2. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Pugalenthi G; Kumar KK; Suganthan PN; Gangal R Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645 [TBL] [Abstract][Full Text] [Related]
3. Accurate sequence-based prediction of catalytic residues. Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875 [TBL] [Abstract][Full Text] [Related]
4. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627 [TBL] [Abstract][Full Text] [Related]
5. Automated method for predicting enzyme functional surfaces and locating key residues with accuracy and specificity. Tseng YY; Liang J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4552-5. PubMed ID: 17947099 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of features for catalytic residue prediction in novel folds. Youn E; Peters B; Radivojac P; Mooney SD Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479 [TBL] [Abstract][Full Text] [Related]
7. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines. Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640 [TBL] [Abstract][Full Text] [Related]
8. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R; Hu J BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668 [TBL] [Abstract][Full Text] [Related]
9. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection. Gao YF; Li BQ; Cai YD; Feng KY; Li ZD; Jiang Y Mol Biosyst; 2013 Jan; 9(1):61-9. PubMed ID: 23117653 [TBL] [Abstract][Full Text] [Related]
10. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. Caragea C; Sinapov J; Silvescu A; Dobbs D; Honavar V BMC Bioinformatics; 2007 Nov; 8():438. PubMed ID: 17996106 [TBL] [Abstract][Full Text] [Related]
11. Computational identification of ubiquitylation sites from protein sequences. Tung CW; Ho SY BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080 [TBL] [Abstract][Full Text] [Related]
12. An improved prediction of catalytic residues in enzyme structures. Tang YR; Sheng ZY; Chen YZ; Zhang Z Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176 [TBL] [Abstract][Full Text] [Related]
13. CSmetaPred: a consensus method for prediction of catalytic residues. Choudhary P; Kumar S; Bachhawat AK; Pandit SB BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005 [TBL] [Abstract][Full Text] [Related]
14. Prodepth: predict residue depth by support vector regression approach from protein sequences only. Song J; Tan H; Mahmood K; Law RH; Buckle AM; Webb GI; Akutsu T; Whisstock JC PLoS One; 2009 Sep; 4(9):e7072. PubMed ID: 19759917 [TBL] [Abstract][Full Text] [Related]
15. Feature selection and the class imbalance problem in predicting protein function from sequence. Al-Shahib A; Breitling R; Gilbert D Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961 [TBL] [Abstract][Full Text] [Related]
16. Active site prediction using evolutionary and structural information. Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507 [TBL] [Abstract][Full Text] [Related]
17. Predicting and annotating catalytic residues: an information theoretic approach. Sterner B; Singh R; Berger B J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954 [TBL] [Abstract][Full Text] [Related]
18. L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier. Dou Y; Wang J; Yang J; Zhang C PLoS One; 2012; 7(4):e35666. PubMed ID: 22558194 [TBL] [Abstract][Full Text] [Related]
19. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145 [TBL] [Abstract][Full Text] [Related]
20. An SVM-based system for predicting protein subnuclear localizations. Lei Z; Dai Y BMC Bioinformatics; 2005 Dec; 6():291. PubMed ID: 16336650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]