BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16790241)

  • 1. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells.
    Dixon KJ; Sherrard RM
    Exp Neurol; 2006 Nov; 202(1):44-56. PubMed ID: 16790241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones.
    Sugihara I; Lohof AM; Letellier M; Mariani J; Sherrard RM
    Eur J Neurosci; 2003 Dec; 18(11):3027-36. PubMed ID: 14656298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination.
    Lohof AM; Mariani J; Sherrard RM
    Eur J Neurosci; 2005 Dec; 22(11):2681-8. PubMed ID: 16324102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-lesion transcommissural olivocerebellar reinnervation improves motor function following unilateral pedunculotomy in the neonatal rat.
    Dixon KJ; Hilber W; Speare S; Willson ML; Bower AJ; Sherrard RM
    Exp Neurol; 2005 Dec; 196(2):254-65. PubMed ID: 16125176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill.
    Willson ML; McElnea C; Mariani J; Lohof AM; Sherrard RM
    Brain; 2008 Apr; 131(Pt 4):1099-112. PubMed ID: 18299295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental neural plasticity and its cognitive benefits: olivocerebellar reinnervation compensates for spatial function in the cerebellum.
    Willson ML; Bower AJ; Sherrard RM
    Eur J Neurosci; 2007 Mar; 25(5):1475-83. PubMed ID: 17425573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reestablishment of the olivocerebellar projection map by compensatory transcommissural reinnervation following unilateral transection of the inferior cerebellar peduncle in the newborn rat.
    Zagrebelsky M; Strata P; Hawkes R; Rossi F
    J Comp Neurol; 1997 Mar; 379(2):283-99. PubMed ID: 9050791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-1 induces neonatal climbing-fibre plasticity in the mature rat cerebellum.
    Sherrard RM; Bower AJ
    Neuroreport; 2003 Sep; 14(13):1713-6. PubMed ID: 14512843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BDNF and NT3 extend the critical period for developmental climbing fibre plasticity.
    Sherrard RM; Bower AJ
    Neuroreport; 2001 Sep; 12(13):2871-4. PubMed ID: 11588593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental modifications of olivocerebellar topography: the granuloprival cerebellum reveals multiple routes from the inferior olive.
    Fournier B; Lohof AM; Bower AJ; Mariani J; Sherrard RM
    J Comp Neurol; 2005 Sep; 490(1):85-97. PubMed ID: 16041715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation.
    Letellier M; Bailly Y; Demais V; Sherrard RM; Mariani J; Lohof AM
    J Neurosci; 2007 May; 27(20):5373-83. PubMed ID: 17507559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4-7.
    Sugihara I
    J Comp Neurol; 2005 Jun; 487(1):93-106. PubMed ID: 15861456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses.
    Rossi F; Wiklund L; van der Want JJ; Strata P
    J Comp Neurol; 1991 Jun; 308(4):513-35. PubMed ID: 1865015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA; Christakos S; Catalano SM
    J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of single olivocerebellar axons in the denervation-reinnervation model produced by subtotal lesion of the rat inferior olive.
    Aoki H; Sugihara I
    Brain Res; 2012 Apr; 1449():24-37. PubMed ID: 22421016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pax3 induces target-specific reinnervation through axon collateral expression of PSA-NCAM.
    Jara JS; Avci HX; Kouremenou I; Doulazmi M; Bakouche J; Dubacq C; Goyenvalle C; Mariani J; Lohof AM; Sherrard RM
    Prog Neurobiol; 2024 Jan; 232():102560. PubMed ID: 38097036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-specific innervation of embryonic cerebellar transplants by regenerating olivocerebellar axons in the adult rat.
    Rossi F; Saggiorato C; Strata P
    Exp Neurol; 2002 Feb; 173(2):205-12. PubMed ID: 11822884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats.
    Bravin M; Savio T; Strata P; Rossi F
    Eur J Neurosci; 1997 Dec; 9(12):2634-49. PubMed ID: 9517469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olivocerebellar projections modify hereditary Purkinje cell degeneration.
    Tolbert DL; Clark BR
    Neuroscience; 2000; 101(2):417-33. PubMed ID: 11074164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.