These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16790273)

  • 1. In vivo behavior of calcium phosphate scaffolds with four different pore sizes.
    von Doernberg MC; von Rechenberg B; Bohner M; Grünenfelder S; van Lenthe GH; Müller R; Gasser B; Mathys R; Baroud G; Auer J
    Biomaterials; 2006 Oct; 27(30):5186-98. PubMed ID: 16790273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the in vivo resorption rate of β-tricalcium phosphate bone graft substitutes implanted in a sheep model.
    Bashoor-Zadeh M; Baroud G; Bohner M
    Biomaterials; 2011 Sep; 32(27):6362-73. PubMed ID: 21658758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep.
    Bodde EW; Wolke JG; Kowalski RS; Jansen JA
    J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques.
    Roy TD; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Aug; 66(2):283-91. PubMed ID: 12888998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of porous beta-tricalcium phosphate blocks.
    Bohner M; van Lenthe GH; Grünenfelder S; Hirsiger W; Evison R; Müller R
    Biomaterials; 2005 Nov; 26(31):6099-105. PubMed ID: 15885772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium phosphate scaffolds mimicking the gradient architecture of native long bones.
    Lindner M; Bergmann C; Telle R; Fischer H
    J Biomed Mater Res A; 2014 Oct; 102(10):3677-84. PubMed ID: 24307071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles.
    Le Nihouannen D; Daculsi G; Saffarzadeh A; Gauthier O; Delplace S; Pilet P; Layrolle P
    Bone; 2005 Jun; 36(6):1086-93. PubMed ID: 15869915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of grain size and microporosity on the in vivo behaviour of β-tricalcium phosphate scaffolds.
    Lapczyna H; Galea L; Wüst S; Bohner M; Jerban S; Sweedy A; Doebelin N; van Garderen N; Hofmann S; Baroud G; Müller R; von Rechenberg B
    Eur Cell Mater; 2014 Oct; 28():299-319. PubMed ID: 25340808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of alpha- and beta-tricalcium phosphate in block grafts.
    Yamada M; Shiota M; Yamashita Y; Kasugai S
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):139-48. PubMed ID: 17106891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylapatite and tricalcium phosphate implants in the dental alveolus of rats. A histometric study.
    Rosa AL; Brentegani LG; Grandini SA
    Braz Dent J; 1995; 6(2):103-9. PubMed ID: 8688654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation.
    Henkel KO; Gerber T; Lenz S; Gundlach KK; Bienengräber V
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2006 Nov; 102(5):606-13. PubMed ID: 17052636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.