These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16790469)

  • 1. Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants.
    Chatelet DS; Matthews MA; Rost TL
    Ann Bot; 2006 Sep; 98(3):483-94. PubMed ID: 16790469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious.
    Chatelet DS; Wistrom CM; Purcell AH; Rost TL; Matthews MA
    Ann Bot; 2011 Jul; 108(1):73-85. PubMed ID: 21546428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease.
    Gambetta GA; Fei J; Rost TL; Matthews MA
    J Exp Bot; 2007; 58(15-16):4037-46. PubMed ID: 18037677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots.
    Pérez-Donoso AG; Greve LC; Walton JH; Shackel KA; Labavitch JM
    Plant Physiol; 2007 Feb; 143(2):1024-36. PubMed ID: 17189331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease.
    Thorne ET; Young BM; Young GM; Stevenson JF; Labavitch JM; Matthews MA; Rost TL
    Am J Bot; 2006 Apr; 93(4):497-504. PubMed ID: 21646209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay.
    Choat B; Gambetta GA; Wada H; Shackel KA; Matthews MA
    Physiol Plant; 2009 Aug; 136(4):384-94. PubMed ID: 19470095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylella fastidiosa: an examination of a re-emerging plant pathogen.
    Rapicavoli J; Ingel B; Blanco-Ulate B; Cantu D; Roper C
    Mol Plant Pathol; 2018 Apr; 19(4):786-800. PubMed ID: 28742234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera.
    Newman KL; Almeida RP; Purcell AH; Lindow SE
    Appl Environ Microbiol; 2003 Dec; 69(12):7319-27. PubMed ID: 14660381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic consequences of enzymatic breakdown of grapevine pit membranes.
    Fanton AC; Brodersen C
    Plant Physiol; 2021 Aug; 186(4):1919-1931. PubMed ID: 33905519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.
    Lee EF; Matthews MA; McElrone AJ; Phillips RJ; Shackel KA; Brodersen CR
    J Theor Biol; 2013 Sep; 333():146-55. PubMed ID: 23743143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylem-dwelling pathogen unaffected by local xylem vessel network properties in grapevines (Vitis spp.).
    Fanton AC; Bouda M; Brodersen C
    Ann Bot; 2024 Apr; 133(4):521-532. PubMed ID: 38334466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease.
    Lindow S; Newman K; Chatterjee S; Baccari C; Lavarone AT; Ionescu M
    Mol Plant Microbe Interact; 2014 Mar; 27(3):244-54. PubMed ID: 24499029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines.
    Pérez-Donoso AG; Sun Q; Roper MC; Greve LC; Kirkpatrick B; Labavitch JM
    Plant Physiol; 2010 Mar; 152(3):1748-59. PubMed ID: 20107028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines.
    Nascimento R; Gouran H; Chakraborty S; Gillespie HW; Almeida-Souza HO; Tu A; Rao BJ; Feldstein PA; Bruening G; Goulart LR; Dandekar AM
    Sci Rep; 2016 Jan; 6():18598. PubMed ID: 26753904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection.
    Lin H; Doddapaneni H; Takahashi Y; Walker MA
    BMC Plant Biol; 2007 Feb; 7():8. PubMed ID: 17316447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.
    Burbank LP; Stenger DC
    Phytopathology; 2017 Apr; 107(4):388-394. PubMed ID: 27938243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.
    Roper MC; Greve LC; Warren JG; Labavitch JM; Kirkpatrick BC
    Mol Plant Microbe Interact; 2007 Apr; 20(4):411-9. PubMed ID: 17427811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem.
    McElrone AJ; Jackson S; Habdas P
    J Exp Bot; 2008; 59(10):2649-57. PubMed ID: 18487632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grapevine xylem sap enhances biofilm development by Xylella fastidiosa.
    Zaini PA; De La Fuente L; Hoch HC; Burr TJ
    FEMS Microbiol Lett; 2009 Jun; 295(1):129-34. PubMed ID: 19473259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Control of Pierce's Disease of Grape by an Endophytic Bacterium.
    Baccari C; Antonova E; Lindow S
    Phytopathology; 2019 Feb; 109(2):248-256. PubMed ID: 30540526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.