These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16790512)

  • 1. Intraluminal ATP concentrations in rat renal tubules.
    Vekaria RM; Unwin RJ; Shirley DG
    J Am Soc Nephrol; 2006 Jul; 17(7):1841-7. PubMed ID: 16790512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal aluminium handling in the rat: a micropuncture assessment.
    Shirley DG; Walter MF; Walter SJ; Thewles A; Lote CJ
    Clin Sci (Lond); 2004 Aug; 107(2):159-65. PubMed ID: 15053741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular reabsorption of technetium-99m-DMSA.
    Müller-Suur R; Gutsche HU
    J Nucl Med; 1995 Sep; 36(9):1654-8. PubMed ID: 7658227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine and renal tubular function.
    Di Sole F
    Curr Opin Nephrol Hypertens; 2008 Jul; 17(4):399-407. PubMed ID: 18660677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous adenosine triphosphate (ATP) preserves proximal tubule microfilament structure and function in vivo in a maleic acid model of ATP depletion.
    Kellerman PS
    J Clin Invest; 1993 Oct; 92(4):1940-9. PubMed ID: 8408646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of nephron filtration from distal and proximal tubules.
    Romano G; Favret G; Federico E; Bartoli E
    J Nephrol; 1998; 11(4):211-5. PubMed ID: 9702873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of urinary fibronectin.
    Gwinner W; Jäckle-Meyer I; Stolte H
    Lab Invest; 1993 Aug; 69(2):250-5. PubMed ID: 8350600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal transport of netilmicin in the rat.
    Pastoriza-Munoz E; Timmerman D; Kaloyanides GJ
    J Pharmacol Exp Ther; 1984 Jan; 228(1):65-72. PubMed ID: 6694109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropuncture study on urea movements in the kidney cortical tubules of low protein fed sheep.
    Tebot I; Faix S; Szanyiova M; Cirio A; Leng L
    Vet Res; 1998; 29(1):99-105. PubMed ID: 9559524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminal nucleotides are tonic inhibitors of renal tubular transport.
    Leipziger J
    Curr Opin Nephrol Hypertens; 2011 Sep; 20(5):518-22. PubMed ID: 21670675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-flow micropuncture study of renal urate transport in the Munich-Wistar rat.
    Frommer JP; Sheth AU; Senekjian HO; Babino H; Weinman EJ
    Miner Electrolyte Metab; 1982 Jun; 7(6):324-30. PubMed ID: 7169993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubular absorption of filtered cystatin-C in the rat kidney.
    Roald AB; Aukland K; Tenstad O
    Exp Physiol; 2004 Nov; 89(6):701-7. PubMed ID: 15328307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved approach for determination of Na(+)-K(+)-ATPase activity in single proximal renal tubule of rat.
    Gao Y; Luo L; Liu H
    Sheng Li Xue Bao; 2007 Jun; 59(3):382-6. PubMed ID: 17579797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal haemodynamic and tubular actions of urotensin II in the rat.
    Abdel-Razik AE; Forty EJ; Balment RJ; Ashton N
    J Endocrinol; 2008 Sep; 198(3):617-24. PubMed ID: 18577565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP release mechanisms, ATP receptors and purinergic signalling along the nephron.
    Schwiebert EM
    Clin Exp Pharmacol Physiol; 2001 Apr; 28(4):340-50. PubMed ID: 11339211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation between the effects of P1, P4-diadenosine tetraphosphate (Ap4A) on renal haemodynamics and tubular function in anaesthetized rats.
    Jankowski M; Angielski S; Szczepańska-Konkel M
    J Physiol Pharmacol; 2008 Mar; 59(1):129-37. PubMed ID: 18441393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute In Vivo Analysis of ATP Release in Rat Kidneys in Response to Changes of Renal Perfusion Pressure.
    Palygin O; Evans LC; Cowley AW; Staruschenko A
    J Am Heart Assoc; 2017 Sep; 6(9):. PubMed ID: 28899893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in renal sodium transport during hypertension development in ouabain-hypertensive rats].
    Ge H; Lü ZR
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Oct; 26(10):1404-7. PubMed ID: 17062336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.
    Mitsuoka K; Shirasaka Y; Fukushi A; Sato M; Nakamura T; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2009 Apr; 30(3):126-37. PubMed ID: 19322909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.