BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 16790548)

  • 1. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.
    Schwer B; Bunkenborg J; Verdin RO; Andersen JS; Verdin E
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10224-10229. PubMed ID: 16788062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2.
    Hirschey MD; Shimazu T; Capra JA; Pollard KS; Verdin E
    Aging (Albany NY); 2011 Jun; 3(6):635-42. PubMed ID: 21701047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate metabolism and aging: An emerging connection.
    Shimazu T; Hirschey MD; Huang JY; Ho LT; Verdin E
    Mech Ageing Dev; 2010; 131(7-8):511-6. PubMed ID: 20478325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
    Starai VJ; Celic I; Cole RN; Boeke JD; Escalante-Semerena JC
    Science; 2002 Dec; 298(5602):2390-2. PubMed ID: 12493915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1.
    Sahar S; Masubuchi S; Eckel-Mahan K; Vollmer S; Galla L; Ceglia N; Masri S; Barth TK; Grimaldi B; Oluyemi O; Astarita G; Hallows WC; Piomelli D; Imhof A; Baldi P; Denu JM; Sassone-Corsi P
    J Biol Chem; 2014 Feb; 289(9):6091-7. PubMed ID: 24425865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate.
    Fujino T; Kondo J; Ishikawa M; Morikawa K; Yamamoto TT
    J Biol Chem; 2001 Apr; 276(14):11420-6. PubMed ID: 11150295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis.
    Gardner JG; Grundy FJ; Henkin TM; Escalante-Semerena JC
    J Bacteriol; 2006 Aug; 188(15):5460-8. PubMed ID: 16855235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase.
    Starai VJ; Takahashi H; Boeke JD; Escalante-Semerena JC
    Curr Opin Microbiol; 2004 Apr; 7(2):115-9. PubMed ID: 15063846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica.
    Starai VJ; Escalante-Semerena JC
    J Mol Biol; 2004 Jul; 340(5):1005-12. PubMed ID: 15236963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.
    Bharathi SS; Zhang Y; Mohsen AW; Uppala R; Balasubramani M; Schreiber E; Uechi G; Beck ME; Rardin MJ; Vockley J; Verdin E; Gibson BW; Hirschey MD; Goetzman ES
    J Biol Chem; 2013 Nov; 288(47):33837-33847. PubMed ID: 24121500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus modulates the activity of acetyl-Coenzyme A synthetase (Acs) by sirtuin-dependent reversible lysine acetylation.
    Burckhardt RM; Buckner BA; Escalante-Semerena JC
    Mol Microbiol; 2019 Aug; 112(2):588-604. PubMed ID: 31099918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirtuins: a conserved key unlocking AceCS activity.
    North BJ; Sinclair DA
    Trends Biochem Sci; 2007 Jan; 32(1):1-4. PubMed ID: 17141505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins.
    Law IK; Liu L; Xu A; Lam KS; Vanhoutte PM; Che CM; Leung PT; Wang Y
    Proteomics; 2009 May; 9(9):2444-56. PubMed ID: 19343720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins.
    Knyphausen P; de Boor S; Kuhlmann N; Scislowski L; Extra A; Baldus L; Schacherl M; Baumann U; Neundorf I; Lammers M
    J Biol Chem; 2016 Jul; 291(28):14677-94. PubMed ID: 27226597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress.
    Kobayashi Y; Furukawa-Hibi Y; Chen C; Horio Y; Isobe K; Ikeda K; Motoyama N
    Int J Mol Med; 2005 Aug; 16(2):237-43. PubMed ID: 16012755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5.
    Nakamura Y; Ogura M; Tanaka D; Inagaki N
    Biochem Biophys Res Commun; 2008 Feb; 366(1):174-9. PubMed ID: 18054327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases.
    Crosby HA; Pelletier DA; Hurst GB; Escalante-Semerena JC
    J Biol Chem; 2012 May; 287(19):15590-601. PubMed ID: 22416131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.