These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16790591)

  • 1. Linear encoding of muscle activity in primary motor cortex and cerebellum.
    Townsend BR; Paninski L; Lemon RN
    J Neurophysiol; 2006 Nov; 96(5):2578-92. PubMed ID: 16790591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct movement parameters are represented by different neurons in the motor cortex.
    Stark E; Drori R; Asher I; Ben-Shaul Y; Abeles M
    Eur J Neurosci; 2007 Aug; 26(4):1055-66. PubMed ID: 17714196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force field effects on cerebellar Purkinje cell discharge with implications for internal models.
    Pasalar S; Roitman AV; Durfee WK; Ebner TJ
    Nat Neurosci; 2006 Nov; 9(11):1404-11. PubMed ID: 17028585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement.
    Ivanusic JJ; Bourke DW; Xu ZM; Butler EG; Horne MK
    Brain Res; 2005 Apr; 1041(2):181-97. PubMed ID: 15829227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
    Paninski L; Fellows MR; Hatsopoulos NG; Donoghue JP
    J Neurophysiol; 2004 Jan; 91(1):515-32. PubMed ID: 13679402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
    Yamamoto K; Kawato M; Kotosaka S; Kitazawa S
    J Neurophysiol; 2007 Feb; 97(2):1588-99. PubMed ID: 17079350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do corticomotoneuronal cells predict target muscle EMG activity?
    Griffin DM; Hudson HM; Belhaj-Saïf A; McKiernan BJ; Cheney PD
    J Neurophysiol; 2008 Mar; 99(3):1169-986. PubMed ID: 18160426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
    Schieber MH; Rivlis G
    J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys.
    Wessberg J; Nicolelis MA
    J Cogn Neurosci; 2004; 16(6):1022-35. PubMed ID: 15298789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional role of different neural activation profiles during precision grip: an artificial neural network approach.
    Grandjean B; Hepp-Reymond MC; Maier MA
    J Physiol Paris; 2007; 101(1-3):9-21. PubMed ID: 18023563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques.
    Boudrias MH; Belhaj-Saïf A; Park MC; Cheney PD
    Cereb Cortex; 2006 May; 16(5):632-8. PubMed ID: 16049188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonuniform distribution of reach-related and torque-related activity in upper arm muscles and neurons of primary motor cortex.
    Kurtzer I; Herter TM; Scott SH
    J Neurophysiol; 2006 Dec; 96(6):3220-30. PubMed ID: 17005623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex spatiotemporal tuning in human upper-limb muscles.
    Pruszynski JA; Lillicrap TP; Scott SH
    J Neurophysiol; 2010 Jan; 103(1):564-72. PubMed ID: 19923243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid changes in throughput from single motor cortex neurons to muscle activity.
    Davidson AG; Chan V; O'Dell R; Schieber MH
    Science; 2007 Dec; 318(5858):1934-7. PubMed ID: 18096808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the cerebellum in modulating voluntary limb movement commands.
    Miller LE; Holdefer RN; Houk JC
    Arch Ital Biol; 2002 Jul; 140(3):175-83. PubMed ID: 12173520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles.
    Cerri G; Shimazu H; Maier MA; Lemon RN
    J Neurophysiol; 2003 Aug; 90(2):832-42. PubMed ID: 12904495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the function of motor cortex: single-neuron models of how neural response is modulated by limb biomechanics.
    Ajemian R; Green A; Bullock D; Sergio L; Kalaska J; Grossberg S
    Neuron; 2008 May; 58(3):414-28. PubMed ID: 18466751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.