BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16790747)

  • 1. Bacillus anthracis phospholipases C facilitate macrophage-associated growth and contribute to virulence in a murine model of inhalation anthrax.
    Heffernan BJ; Thomason B; Herring-Palmer A; Shaughnessy L; McDonald R; Fisher N; Huffnagle GB; Hanna P
    Infect Immun; 2006 Jul; 74(7):3756-64. PubMed ID: 16790747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax.
    Heffernan BJ; Thomason B; Herring-Palmer A; Hanna P
    FEMS Microbiol Lett; 2007 Jun; 271(1):98-105. PubMed ID: 17419764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of srtA and srtB for growth of Bacillus anthracis in macrophages.
    Zink SD; Burns DL
    Infect Immun; 2005 Aug; 73(8):5222-8. PubMed ID: 16041044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice.
    Wilson MK; Vergis JM; Alem F; Palmer JR; Keane-Myers AM; Brahmbhatt TN; Ventura CL; O'Brien AD
    Infect Immun; 2011 Aug; 79(8):3012-9. PubMed ID: 21576337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape.
    Dixon TC; Fadl AA; Koehler TM; Swanson JA; Hanna PC
    Cell Microbiol; 2000 Dec; 2(6):453-63. PubMed ID: 11207600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of Bacillus anthracis during infection of host macrophages.
    Bergman NH; Anderson EC; Swenson EE; Janes BK; Fisher N; Niemeyer MM; Miyoshi AD; Hanna PC
    Infect Immun; 2007 Jul; 75(7):3434-44. PubMed ID: 17470545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence.
    Cendrowski S; MacArthur W; Hanna P
    Mol Microbiol; 2004 Jan; 51(2):407-17. PubMed ID: 14756782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress.
    Cybulski RJ; Sanz P; Alem F; Stibitz S; Bull RL; O'Brien AD
    Infect Immun; 2009 Jan; 77(1):274-85. PubMed ID: 18955476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis.
    Chateau A; Lunderberg JM; Oh SY; Abshire T; Friedlander A; Quinn CP; Missiakas DM; Schneewind O
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229702
    [No Abstract]   [Full Text] [Related]  

  • 10. Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of Bacillus anthracis.
    Hu J; Zhang G; Liang L; Lei C; Sun X
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32071095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages.
    Mujtaba S; Winer BY; Jaganathan A; Patel J; Sgobba M; Schuch R; Gupta YK; Haider S; Wang R; Fischetti VA
    J Biol Chem; 2013 Aug; 288(32):23458-72. PubMed ID: 23720780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dltABCD operon of Bacillus anthracis sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity.
    Fisher N; Shetron-Rama L; Herring-Palmer A; Heffernan B; Bergman N; Hanna P
    J Bacteriol; 2006 Feb; 188(4):1301-9. PubMed ID: 16452412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence.
    Giebel JD; Carr KA; Anderson EC; Hanna PC
    J Bacteriol; 2009 Sep; 191(18):5569-76. PubMed ID: 19581364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Bacillus anthracis spores in murine primary macrophages.
    Hu H; Sa Q; Koehler TM; Aronson AI; Zhou D
    Cell Microbiol; 2006 Oct; 8(10):1634-42. PubMed ID: 16984418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus anthracis factors for phagosomal escape.
    Tonello F; Zornetta I
    Toxins (Basel); 2012 Jul; 4(7):536-53. PubMed ID: 22852067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BrnQ-Type Branched-Chain Amino Acid Transporters Influence Bacillus anthracis Growth and Virulence.
    Dutta S; Corsi ID; Bier N; Koehler TM
    mBio; 2022 Feb; 13(1):e0364021. PubMed ID: 35073743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective antiprotease-antibiotic treatment of experimental anthrax.
    Popov SG; Popova TG; Hopkins S; Weinstein RS; MacAfee R; Fryxell KJ; Chandhoke V; Bailey C; Alibek K
    BMC Infect Dis; 2005 Apr; 5():25. PubMed ID: 15819985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating virulence mechanisms among Bacillus anthracis strains by using a murine subcutaneous infection model.
    Chand HS; Drysdale M; Lovchik J; Koehler TM; Lipscomb MF; Lyons CR
    Infect Immun; 2009 Jan; 77(1):429-35. PubMed ID: 18981254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of nitric oxide synthase in the control of infection by Bacillus anthracis.
    Raines KW; Kang TJ; Hibbs S; Cao GL; Weaver J; Tsai P; Baillie L; Cross AS; Rosen GM
    Infect Immun; 2006 Apr; 74(4):2268-76. PubMed ID: 16552057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibody against the poly-gamma-D-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge.
    Jang J; Cho M; Lee HR; Cha K; Chun JH; Hong KJ; Park J; Rhie GE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2804-12. PubMed ID: 23201204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.