These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16791207)

  • 41. Recognition of DNase I hypersensitive sites in multiple cell lines.
    Chen W; Luo L; Zhang L; Lin H
    Int J Bioinform Res Appl; 2009; 5(4):378-84. PubMed ID: 19640826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genomic approaches to studying CFTR transcriptional regulation.
    Ott CJ; Harris A
    Methods Mol Biol; 2011; 741():193-209. PubMed ID: 21594786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic changes in the chromatin of the chicken lysozyme gene domain during differentiation of multipotent progenitors to macrophages.
    Huber MC; Graf T; Sippel AE; Bonifer C
    DNA Cell Biol; 1995 May; 14(5):397-402. PubMed ID: 7748489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional analysis of DNA sequences located within a cluster of DNase I hypersensitive sites colocalizing with a MAR element at the upstream border of the chicken alpha-globin gene domain.
    Razin SV; Shen K; Ioudinkova E; Scherrer K
    J Cell Biochem; 1999 Jul; 74(1):38-49. PubMed ID: 10381260
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-resolution mapping of open chromatin in the rice genome.
    Zhang W; Wu Y; Schnable JC; Zeng Z; Freeling M; Crawford GE; Jiang J
    Genome Res; 2012 Jan; 22(1):151-62. PubMed ID: 22110044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Native genomic blotting: a novel approach to mapping DNase I hypersensitive sites and protein-DNA interactions at high resolution.
    Pauli U; Chrysogelos S; Stein J; Stein G
    Biotechniques; 1988 Feb; 6(2):142-7. PubMed ID: 3273179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule.
    Liang Y; Zhang S
    Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time PCR mapping of DNaseI-hypersensitive sites using a novel ligation-mediated amplification technique.
    Follows GA; Janes ME; Vallier L; Green AR; Gottgens B
    Nucleic Acids Res; 2007; 35(8):e56. PubMed ID: 17389645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient.
    Liang Y; Zhang S
    SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and promoter activity of DNase I hypersensitive sites in the region of the Hox-1.3 gene.
    Lobe CG; Gruss P
    DNA Cell Biol; 1994 Feb; 13(2):149-60. PubMed ID: 7910023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Mapping of DNAse I hypersensitive sites in the 5'-terminal region of the chicken alpha-globin gene domain].
    Razin SV
    Genetika; 1994 Jan; 30(1):33-6. PubMed ID: 8188043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin.
    Ling G; Waxman DJ
    Methods Mol Biol; 2013; 977():21-33. PubMed ID: 23436351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells.
    Song L; Crawford GE
    Cold Spring Harb Protoc; 2010 Feb; 2010(2):pdb.prot5384. PubMed ID: 20150147
    [No Abstract]   [Full Text] [Related]  

  • 55. pDHS-DSET: Prediction of DNase I hypersensitive sites in plant genome using DS evidence theory.
    Zhang S; Lin J; Su L; Zhou Z
    Anal Biochem; 2019 Jan; 564-565():54-63. PubMed ID: 30339812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification.
    He HH; Meyer CA; Hu SS; Chen MW; Zang C; Liu Y; Rao PK; Fei T; Xu H; Long H; Liu XS; Brown M
    Nat Methods; 2014 Jan; 11(1):73-78. PubMed ID: 24317252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components.
    Zhang S; Zhuang W; Xu Z
    Anal Biochem; 2018 May; 549():149-156. PubMed ID: 29604265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved DNase-seq protocol facilitates high resolution mapping of DNase I hypersensitive sites in roots in Arabidopsis thaliana.
    Cumbie JS; Filichkin SA; Megraw M
    Plant Methods; 2015; 11():42. PubMed ID: 26339280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome.
    Tang X; Zheng P; Liu Y; Yao Y; Huang G
    Math Biosci Eng; 2023 Jan; 20(1):1037-1057. PubMed ID: 36650801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gammaretroviral vector integration occurs overwhelmingly within and near DNase hypersensitive sites.
    Liu M; Li CL; Stamatoyannopoulos G; Dorschner MO; Humbert R; Stamatoyannopoulos JA; Emery DW
    Hum Gene Ther; 2012 Feb; 23(2):231-7. PubMed ID: 21981728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.