These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16791507)

  • 1. Laurdan in fluid bilayers: position and structural sensitivity.
    De Vequi-Suplicy CC; Benatti CR; Lamy MT
    J Fluoresc; 2006 May; 16(3):431-9. PubMed ID: 16791507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan.
    Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biophys Chem; 2005 Oct; 117(3):199-206. PubMed ID: 15961215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The new fluorescent membrane probe Ahba: a comparative study with the largely used Laurdan.
    Vequi-Suplicy CC; Lamy MT; Marquezin CA
    J Fluoresc; 2013 May; 23(3):479-86. PubMed ID: 23397490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laurdan spectrum decomposition as a tool for the analysis of surface bilayer structure and polarity: a study with DMPG, peptides and cholesterol.
    Lúcio AD; Vequi-Suplicy CC; Fernandez RM; Lamy MT
    J Fluoresc; 2010 Mar; 20(2):473-82. PubMed ID: 19921409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What different physical techniques can disclose about disruptions on membrane structure caused by the antimicrobial peptide Hylin a1 and a more positively charged analogue.
    Vignoli Muniz GS; Duarte EL; Lorenzón EN; Cilli EM; Lamy MT
    Chem Phys Lipids; 2022 Mar; 243():105173. PubMed ID: 34995561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplicity of solvent environments in lipid bilayer revealed by DAS deconvolution of twin probes: Comparative method of Laurdan and Prodan.
    Ito N; Watanabe NM; Okamoto Y; Umakoshi H
    Biophys J; 2023 Dec; 122(23):4614-4623. PubMed ID: 37924207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on the fluorescent emission spectra of Prodan and Laurdan.
    Vequi-Suplicy CC; Coutinho K; Lamy MT
    J Fluoresc; 2015 May; 25(3):621-9. PubMed ID: 25753230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of quercetin effects on phospholipid membranes containing cholesterol using Laurdan fluorescence.
    Ionescu D; Ganea C
    Eur Biophys J; 2012 Feb; ():. PubMed ID: 22302013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectra decomposition by asymmetric functions: Laurdan spectrum revisited.
    Bacalum M; Zorilă B; Radu M
    Anal Biochem; 2013 Sep; 440(2):123-9. PubMed ID: 23747535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer.
    Watanabe N; Goto Y; Suga K; Nyholm TKM; Slotte JP; Umakoshi H
    Biophys J; 2019 Mar; 116(5):874-883. PubMed ID: 30819567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lipid domains and dynamics as detected by Laurdan fluorescence.
    Parasassi T; Gratton E
    J Fluoresc; 1995 Mar; 5(1):59-69. PubMed ID: 24226612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
    Picardi MV; Cruz A; Orellana G; Pérez-Gil J
    Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes.
    Bagatolli LA
    Subcell Biochem; 2015; 71():105-25. PubMed ID: 26438263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives.
    Osella S; Murugan NA; Jena NK; Knippenberg S
    J Chem Theory Comput; 2016 Dec; 12(12):6169-6181. PubMed ID: 27806200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes.
    Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.