These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16791653)

  • 61. Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum.
    Arkhipov A; Freddolino PL; Imada K; Namba K; Schulten K
    Biophys J; 2006 Dec; 91(12):4589-97. PubMed ID: 16997871
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure analysis of the flagellar cap-filament complex by electron cryomicroscopy and single-particle image analysis.
    Yonekura K; Maki-Yonekura S; Namba K
    J Struct Biol; 2001; 133(2-3):246-53. PubMed ID: 11472095
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mesoscopic modeling of bacterial flagellar microhydrodynamics.
    Gebremichael Y; Ayton GS; Voth GA
    Biophys J; 2006 Nov; 91(10):3640-52. PubMed ID: 16935949
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Three mutations in Escherichia coli that generate transformable functional flagella.
    Wang W; Jiang Z; Westermann M; Ping L
    J Bacteriol; 2012 Nov; 194(21):5856-63. PubMed ID: 22923592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A structure-function study of C-terminal residues predicted to line the export channel in Salmonella Flagellin.
    Burtchett T; Love C; Sarkar R; Tripp BC
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129748. PubMed ID: 32980501
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments.
    Barry E; Hensel Z; Dogic Z; Shribak M; Oldenbourg R
    Phys Rev Lett; 2006 Jan; 96(1):018305. PubMed ID: 16486530
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synchronization, slippage, and unbundling of driven helical flagella.
    Reigh SY; Winkler RG; Gompper G
    PLoS One; 2013; 8(8):e70868. PubMed ID: 23976961
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism.
    Trachtenberg S; Galkin VE; Egelman EH
    J Mol Biol; 2005 Feb; 346(3):665-76. PubMed ID: 15713454
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella.
    Ikeda T; Homma M; Iino T; Asakura S; Kamiya R
    J Bacteriol; 1987 Mar; 169(3):1168-73. PubMed ID: 3546266
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bacterial motion: progress in flagellation.
    Spencer M
    Nature; 1984 May 31-Jun 6; 309(5967):404-5. PubMed ID: 6374466
    [No Abstract]   [Full Text] [Related]  

  • 71. Domain organization of the subunit of the Salmonella typhimurium flagellar hook.
    Morgan DG; Macnab RM; Francis NR; DeRosier DJ
    J Mol Biol; 1993 Jan; 229(1):79-84. PubMed ID: 8421316
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Variability in bacterial flagella re-growth patterns after breakage.
    Paradis G; Chevance FFV; Liou W; Renault TT; Hughes KT; Rainville S; Erhardt M
    Sci Rep; 2017 Apr; 7(1):1282. PubMed ID: 28455518
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanoscopic analysis on pH induced morphological changes of flagella in Escherichia coli.
    Chang KC; Cheng SJ; Chen YC; Huang HR; Liou JW
    J Microbiol Immunol Infect; 2013 Dec; 46(6):405-12. PubMed ID: 23017690
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temporary expression of flagellar phase-1 in phase-2 clones of diphasic Salmonella.
    Iino T; Oguchi T; Hirano T
    J Gen Microbiol; 1975 Aug; 89(2):265-76. PubMed ID: 1100772
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli.
    Fahrner KA; Block SM; Krishnaswamy S; Parkinson JS; Berg HC
    J Mol Biol; 1994 Apr; 238(2):173-86. PubMed ID: 8158647
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Total reconstitution of Salmonella flagellar filaments from hook and purified flagellin and hook-associated proteins in vitro.
    Ikeda T; Asakura S; Kamiya R
    J Mol Biol; 1989 Sep; 209(1):109-14. PubMed ID: 2810363
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparing well-oriented sols of straight bacterial flagellar filaments for X-ray fiber diffraction.
    Yamashita I; Vonderviszt F; Noguchi T; Namba K
    J Mol Biol; 1991 Jan; 217(2):293-302. PubMed ID: 1992163
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of the disordered terminal regions of flagellin in filament formation and stability.
    Vonderviszt F; Aizawa S; Namba K
    J Mol Biol; 1991 Oct; 221(4):1461-74. PubMed ID: 1942062
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Plugging interactions of HAP2 pentamer into the distal end of flagellar filament revealed by electron microscopy.
    Maki S; Vonderviszt F; Furukawa Y; Imada K; Namba K
    J Mol Biol; 1998 Apr; 277(4):771-7. PubMed ID: 9545371
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Flagellin polymerisation control by a cytosolic export chaperone.
    Auvray F; Thomas J; Fraser GM; Hughes C
    J Mol Biol; 2001 Apr; 308(2):221-9. PubMed ID: 11327763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.