BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16791725)

  • 1. New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss.
    Lenting HB; Schroeder M; Guebitz GM; Cavaco-Paulo A; Shen J
    Biotechnol Lett; 2006 May; 28(10):711-6. PubMed ID: 16791725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Industrial production of enzyme-modified wool fibers for machine-washable bed coverings.
    Lenting HB; Broekman H; Guebitz GM; Kokol V; Shen J
    Biotechnol J; 2009 Oct; 4(10):1441-9. PubMed ID: 19557799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolytic enzyme engineering: a tool for wool.
    Araújo R; Silva C; Machado R; Casal M; Cunha AM; Rodriguez-Cabello JC; Cavaco-Paulo A
    Biomacromolecules; 2009 Jun; 10(6):1655-61. PubMed ID: 19459642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ethoxylated alkyl phosphate (anionic surfactant) for the promotion of activities of proteases and its potential use in the enzymatic processing of wool.
    Zhang Q; Smith E; Shen J; Bishop D
    Biotechnol Lett; 2006 May; 28(10):717-23. PubMed ID: 16791726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel "trifunctional protease" with reducibility, hydrolysis, and localization used for wool anti-felting treatment.
    Mei J; Zhang N; Yu Y; Wang Q; Yuan J; Wang P; Cui L; Fan X
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9159-9170. PubMed ID: 30083801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of bleached wool with trans-glutaminases to enhance tensile strength, whiteness, and alkali resistance.
    Montazer M; Lessan F; Pajootan E; Dadashian F
    Appl Biochem Biotechnol; 2011 Sep; 165(2):748-59. PubMed ID: 21638062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detergent formulations for wool domestic washings containing immobilized enzymes.
    Vasconcelos A; Silva CJ; Schroeder M; Guebitz GM; Cavaco-Paulo A
    Biotechnol Lett; 2006 May; 28(10):725-31. PubMed ID: 16791727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric.
    Cai SB; Huang ZH; Zhang XQ; Cao ZJ; Zhou MH; Hong F
    Appl Biochem Biotechnol; 2011 Jan; 163(1):112-26. PubMed ID: 20607444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of wool with laccase and dyeing with madder.
    Montazer M; Dadashian F; Hemmatinejad N; Farhoudi K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):685-93. PubMed ID: 19015822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalised hybrid materials of conducting polymers with individual wool fibers.
    Kelly FM; Johnston JH; Borrmann T; Richardson MJ
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1965-72. PubMed ID: 18572600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transglutaminase treatment of wool fabrics leads to resistance to detergent damage.
    Cortez J; Bonner PL; Griffin M
    J Biotechnol; 2005 Apr; 116(4):379-86. PubMed ID: 15748764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials.
    Niu M; Liu X; Dai J; Hou W; Wei L; Xu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():289-93. PubMed ID: 22074883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dyeing of wool fibres with natural dyes: effect of proteolytic enzymes.
    Doğru M; Baysal Z; Aytekin C
    Prep Biochem Biotechnol; 2006; 36(3):215-21. PubMed ID: 16707332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of wool with protease extracted polypeptides.
    Smith E; Shen J
    J Biotechnol; 2011 Nov; 156(2):134-40. PubMed ID: 21871933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable soy protein isolate-based materials: a review.
    Song F; Tang DL; Wang XL; Wang YZ
    Biomacromolecules; 2011 Oct; 12(10):3369-80. PubMed ID: 21910508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic formulations for protein fibers: experimental analysis of the effect of preparation on compatibility and photocatalytic activities.
    Tung WS; Daoud WA
    J Colloid Interface Sci; 2008 Oct; 326(1):283-8. PubMed ID: 18691723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano polypeptide particles reinforced polymer composite fibers.
    Li J; Li Y; Zhang J; Li G; Liu X; Li Z; Liu X; Han Y; Zhao Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):3871-6. PubMed ID: 25647481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.
    Jin Y; Cheng X; Zheng Z
    Bioresour Technol; 2010 Mar; 101(6):2046-8. PubMed ID: 19854642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new cuticle scale hydrolysing protease from Beauveria brongniartii.
    Erlacher A; Sousa F; Schroeder M; Jus S; Kokol V; Cavaco-Paulo A; Guebitz GM
    Biotechnol Lett; 2006 May; 28(10):703-10. PubMed ID: 16791724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and properties of gluten/zein composite.
    Kim S
    Bioresour Technol; 2008 Apr; 99(6):2032-6. PubMed ID: 17482808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.