These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 16792241)

  • 1. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):11-9. PubMed ID: 16792241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS; Oh KT; Hwang CJ
    Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states.
    Kusy RP; Whitley JQ; Prewitt MJ
    Angle Orthod; 1991; 61(4):293-302. PubMed ID: 1763840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to sliding of titanium brackets tested against stainless steel and beta-titanium archwires with second-order angulation in the dry and wet states.
    Whitley JQ; Kusy RP
    Am J Orthod Dentofacial Orthop; 2007 Mar; 131(3):400-11. PubMed ID: 17346598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro friction of stainless steel arch wire-bracket combinations in air and different aqueous solutions.
    Al-Khatib S; Berradja A; Celis JP; Willems G
    Orthod Craniofac Res; 2005 May; 8(2):96-105. PubMed ID: 15888122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires--an in vitro study.
    Vijayalakshmi RD; Nagachandran KS; Kummi P; Jayakumar P
    Indian J Dent Res; 2009; 20(4):448-52. PubMed ID: 20139569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The friction and wear patterns of orthodontic brackets and archwires in the dry state.
    Michelberger DJ; Eadie RL; Faulkner MG; Glover KE; Prasad NG; Major PW
    Am J Orthod Dentofacial Orthop; 2000 Dec; 118(6):662-74. PubMed ID: 11113802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static frictional force and surface roughness of various bracket and wire combinations.
    Doshi UH; Bhad-Patil WA
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):74-9. PubMed ID: 21195280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro investigation on friction generated by ceramic brackets.
    Tecco S; Teté S; Festa M; Festa F
    World J Orthod; 2010; 11(4):e133-44. PubMed ID: 21490982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states.
    Thorstenson G; Kusy R
    Angle Orthod; 2003 Apr; 73(2):167-75. PubMed ID: 12725373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.
    Wichelhaus A; Geserick M; Hibst R; Sander FG
    Dent Mater; 2005 Oct; 21(10):938-45. PubMed ID: 15923033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frictional forces between lingual brackets and archwires measured by a friction tester.
    Park JH; Lee YK; Lim BS; Kim CW
    Angle Orthod; 2004 Dec; 74(6):816-24. PubMed ID: 15673146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-deflection properties of initial orthodontic archwires.
    Quintão CC; Cal-Neto JP; Menezes LM; Elias CN
    World J Orthod; 2009; 10(1):29-32. PubMed ID: 19388430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel content of as-received and retrieved NiTi and stainless steel archwires: assessing the nickel release hypothesis.
    Eliades T; Zinelis S; Papadopoulos MA; Eliades G; Athanasiou AE
    Angle Orthod; 2004 Apr; 74(2):151-4. PubMed ID: 15132439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.
    Iijima M; Endo K; Yuasa T; Ohno H; Hayashi K; Kakizaki M; Mizoguchi I
    Angle Orthod; 2006 Jul; 76(4):705-11. PubMed ID: 16808581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dental arch convexity and type of archwire on frictional forces.
    Fourie Z; Ozcan M; Sandham A
    Am J Orthod Dentofacial Orthop; 2009 Jul; 136(1):14.e1-7; discussion 14-5. PubMed ID: 19577138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments.
    Huang HH
    Dent Mater; 2007 Jan; 23(1):24-33. PubMed ID: 16417915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of frictional forces in active and passive self-ligating brackets with various archwire alloys.
    Krishnan M; Kalathil S; Abraham KM
    Am J Orthod Dentofacial Orthop; 2009 Nov; 136(5):675-82. PubMed ID: 19892284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.