These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 16792290)
1. The Neurochip BCI: towards a neural prosthesis for upper limb function. Jackson A; Moritz CT; Mavoori J; Lucas TH; Fetz EE IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):187-90. PubMed ID: 16792290 [TBL] [Abstract][Full Text] [Related]
2. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives. Rupp R; Gerner HJ Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589 [TBL] [Abstract][Full Text] [Related]
3. Walking with WALK! A cooperative, patient-driven neuroprosthetic system. Fuhr T; Quintern J; Riener R; Schmidt G IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049 [No Abstract] [Full Text] [Related]
4. Control of an electrical prosthesis with an SSVEP-based BCI. Müller-Putz GR; Pfurtscheller G IEEE Trans Biomed Eng; 2008 Jan; 55(1):361-4. PubMed ID: 18232384 [TBL] [Abstract][Full Text] [Related]
5. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. Moritz CT; Lucas TH; Perlmutter SI; Fetz EE J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685 [TBL] [Abstract][Full Text] [Related]
6. Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study. Márquez-Chin C; Popovic MR; Cameron T; Lozano AM; Chen R Spinal Cord; 2009 Nov; 47(11):802-8. PubMed ID: 19381156 [TBL] [Abstract][Full Text] [Related]
7. Model-based development of neural prostheses for movement. Davoodi R; Urata C; Hauschild M; Khachani M; Loeb GE IEEE Trans Biomed Eng; 2007 Nov; 54(11):1909-18. PubMed ID: 18018686 [TBL] [Abstract][Full Text] [Related]
8. Muscle-specific variations in use-dependent crossed-facilitation of corticospinal pathways mediated by transcranial direct current (DC) stimulation. Carson RG; Kennedy NC; Linden MA; Britton L Neurosci Lett; 2008 Aug; 441(2):153-7. PubMed ID: 18582535 [TBL] [Abstract][Full Text] [Related]
9. Automated stimulus-response mapping of high-electrode-count neural implants. Wilder AM; Hiatt SD; Dowden BR; Brown NA; Normann RA; Clark GA IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):504-11. PubMed ID: 19666339 [TBL] [Abstract][Full Text] [Related]
10. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Cincotti F; Pichiorri F; Aricò P; Aloise F; Leotta F; de Vico Fallani F; Millán Jdel R; Molinari M; Mattia D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4112-5. PubMed ID: 23366832 [TBL] [Abstract][Full Text] [Related]
11. Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation. Micera S; Keller T; Lawrence M; Morari M; Popović DB IEEE Eng Med Biol Mag; 2010; 29(3):64-9. PubMed ID: 20659859 [TBL] [Abstract][Full Text] [Related]
12. OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity. Schill O; Wiegand R; Schmitz B; Matthies R; Eck U; Pylatiuk C; Reischl M; Schulz S; Rupp R Biomed Tech (Berl); 2011 Feb; 56(1):35-44. PubMed ID: 21210758 [TBL] [Abstract][Full Text] [Related]
13. EEG based BCI-towards a better control. Brain-computer interface research at Aalborg University. Nielsen KD; Cabrera AF; do Nascimento OF IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):202-4. PubMed ID: 16792294 [TBL] [Abstract][Full Text] [Related]
14. Changes in corticospinal efficacy contribute to the locomotor plasticity observed after unilateral cutaneous denervation of the hindpaw in the cat. Bretzner F; Drew T J Neurophysiol; 2005 Oct; 94(4):2911-27. PubMed ID: 16014797 [TBL] [Abstract][Full Text] [Related]
15. A new system for the treatment of retinal degeneration. Wrobel WG; Banzhaf A; Blaess G; Eipper C; Harscher A; Hekmat A; Möller A; Mohrlok R; Pätzold J Biomed Tech (Berl); 2011 Oct; 56(5):277-82. PubMed ID: 21867451 [TBL] [Abstract][Full Text] [Related]
16. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons. Schieber MH; Rivlis G J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361 [TBL] [Abstract][Full Text] [Related]
17. Retinal neurostimulator for a multifocal vision prosthesis. Wong YT; Dommel N; Preston P; Hallum LE; Lehmann T; Lovell NH; Suaning GJ IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):425-34. PubMed ID: 17894275 [TBL] [Abstract][Full Text] [Related]
18. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. O'Dwyer SB; O'Keeffe DT; Coote S; Lyons GM Med Eng Phys; 2006 Mar; 28(2):166-76. PubMed ID: 15936975 [TBL] [Abstract][Full Text] [Related]
19. A review of portable FES-based neural orthoses for the correction of drop foot. Lyons GM; Sinkjaer T; Burridge JH; Wilcox DJ IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):260-79. PubMed ID: 12611364 [TBL] [Abstract][Full Text] [Related]