These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16792347)

  • 1. Review of the arc process modeling for fullerene and nanotube production.
    Farhat S; Scott CD
    J Nanosci Nanotechnol; 2006 May; 6(5):1189-210. PubMed ID: 16792347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth.
    Keidar M; Waas AM; Raitses Y; Waldorff EI
    J Nanosci Nanotechnol; 2006 May; 6(5):1309-14. PubMed ID: 16792357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-assembled carbon nanotubes: electric field-related effects.
    Levchenko I; Ostrikov K; Keidar M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6112-22. PubMed ID: 19198353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arc process parameters for single-walled carbon nanotube growth and production: experiments and modeling.
    Farhat S; Hinkov I; Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):377-89. PubMed ID: 15296227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes.
    Troche KS; Coluci VR; Braga SF; Chinellato DD; Sato F; Legoas SB; Rurali R; Galvão DS
    Nano Lett; 2005 Feb; 5(2):349-55. PubMed ID: 15794624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in laser synthesis of single-walled carbon nanotubes.
    Kingston CT; Simard B
    J Nanosci Nanotechnol; 2006 May; 6(5):1225-32. PubMed ID: 16792349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes.
    Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):368-76. PubMed ID: 15296226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on mechanism of single-walled carbon nanotube formation.
    Nasibulin AG; Queipo P; Shandakov SD; Brown DP; Jiang H; Pikhitsa PV; Tolochko OV; Kauppinen EI
    J Nanosci Nanotechnol; 2006 May; 6(5):1233-46. PubMed ID: 16792350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-walled carbon nanotubes synthesis: a direct comparison of laser ablation and carbon arc routes.
    Bystrzejewski M; Rümmeli MH; Lange H; Huczko A; Baranowski P; Gemming T; Pichler T
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6178-86. PubMed ID: 19198361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic simulations of catalyzed carbon nanotube growth.
    Bolton K; Ding F; Rosén A
    J Nanosci Nanotechnol; 2006 May; 6(5):1211-24. PubMed ID: 16792348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of high quality carbon nanotubes with a simple ethanol-assisted arc discharge process.
    Mao B; Kang Z; Wang E; Tian C; Wang C; Lan Y
    J Nanosci Nanotechnol; 2006 May; 6(5):1392-5. PubMed ID: 16792370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube: the inside story.
    Ando Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3726-38. PubMed ID: 20355364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel hybrid carbon material.
    Nasibulin AG; Pikhitsa PV; Jiang H; Brown DP; Krasheninnikov AV; Anisimov AS; Queipo P; Moisala A; Gonzalez D; Lientschnig G; Hassanien A; Shandakov SD; Lolli G; Resasco DE; Choi M; Tománek D; Kauppinen EI
    Nat Nanotechnol; 2007 Mar; 2(3):156-61. PubMed ID: 18654245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the catalyst in the growth of single-wall carbon nanotubes.
    Balbuena PB; Zhao J; Huang S; Wang Y; Sakulchaicharoen N; Resasco DE
    J Nanosci Nanotechnol; 2006 May; 6(5):1247-58. PubMed ID: 16792351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of carbon nanotubes by arc discharge in open air.
    Paladugu MC; Maneesh K; Nair PK; Haridoss P
    J Nanosci Nanotechnol; 2005 May; 5(5):747-52. PubMed ID: 16010933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized nanotube serpentines.
    Geblinger N; Ismach A; Joselevich E
    Nat Nanotechnol; 2008 Apr; 3(4):195-200. PubMed ID: 18654502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
    In JB; Grigoropoulos CP; Chernov AA; Noy A
    ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.