These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16792352)

  • 1. Fe/C interactions during SWNT growth with C2 feedstock molecules: A quantum chemical molecular dynamics study.
    Zheng G; Irle S; Morokuma K
    J Nanosci Nanotechnol; 2006 May; 6(5):1259-70. PubMed ID: 16792352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic simulations of catalyzed carbon nanotube growth.
    Bolton K; Ding F; Rosén A
    J Nanosci Nanotechnol; 2006 May; 6(5):1211-24. PubMed ID: 16792348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.
    Duan H; Rosén A; Harutyunyan A; Curtarolo S; Bolton K
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6170-7. PubMed ID: 19198360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.
    Ding F; Larsson P; Larsson JA; Ahuja R; Duan H; Rosén A; Bolton K
    Nano Lett; 2008 Feb; 8(2):463-8. PubMed ID: 18162001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-electron DFT modeling of SWCNT growth on iron catalysts from carbon monoxide feedstock.
    Gutsev GL; Mochena MD; Bauschlicher CW
    J Nanosci Nanotechnol; 2006 May; 6(5):1281-9. PubMed ID: 16792354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests.
    Hasegawa K; Noda S; Sugime H; Kakehi K; Maruyama S; Yamaguchi Y
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6123-8. PubMed ID: 19198354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the catalyst in the growth of single-wall carbon nanotubes.
    Balbuena PB; Zhao J; Huang S; Wang Y; Sakulchaicharoen N; Resasco DE
    J Nanosci Nanotechnol; 2006 May; 6(5):1247-58. PubMed ID: 16792351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth.
    Keidar M; Waas AM; Raitses Y; Waldorff EI
    J Nanosci Nanotechnol; 2006 May; 6(5):1309-14. PubMed ID: 16792357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of confined water inside narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1796-9. PubMed ID: 17654942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the nucleation and chirality selection of carbon nanotubes.
    Li L; Reich S; Robertson J
    J Nanosci Nanotechnol; 2006 May; 6(5):1290-7. PubMed ID: 16792355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on mechanism of single-walled carbon nanotube formation.
    Nasibulin AG; Queipo P; Shandakov SD; Brown DP; Jiang H; Pikhitsa PV; Tolochko OV; Kauppinen EI
    J Nanosci Nanotechnol; 2006 May; 6(5):1233-46. PubMed ID: 16792350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.
    Einarsson E; Kadowaki M; Ogura K; Okawa J; Xiang R; Zhang Z; Yamamoto T; Ikuhara Y; Maruyama S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6093-8. PubMed ID: 19198350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of a carbon nanobud.
    Wu X; Zeng XC
    ACS Nano; 2008 Jul; 2(7):1459-65. PubMed ID: 19206315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process.
    Nikolaev P
    J Nanosci Nanotechnol; 2004 Apr; 4(4):307-16. PubMed ID: 15296221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi scale theoretical study of Li+ interaction with carbon nanotubes.
    Mpourmpakis G; Tylianakis E; Papanikolaou D; Froudakis GE
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3731-5. PubMed ID: 17256322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.