BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 16792360)

  • 1. Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET.
    Lee DS; Svensson J; Lee SW; Park YW; Campbell EE
    J Nanosci Nanotechnol; 2006 May; 6(5):1325-30. PubMed ID: 16792360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment.
    Zheng G; Li Q; Jiang K; Zhang X; Chen J; Ren Z; Fan S
    Nano Lett; 2007 Jun; 7(6):1622-5. PubMed ID: 17508771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale contacts between carbon nanotubes and metallic pads.
    Peng N; Li H; Zhang Q
    ACS Nano; 2009 Dec; 3(12):4117-21. PubMed ID: 19894695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube fiber microelectrodes: design, characterization, and optimization.
    Viry L; Derré A; Garrigue P; Sojic N; Poulin P; Kuhn A
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3373-7. PubMed ID: 18330143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube multi-channeled field-effect transistors.
    Chen C; Zhang Y
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3789-93. PubMed ID: 17260441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.
    Nakashima Y; Ohno Y; Kishimoto S; Okochi M; Honda H; Mizutani T
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3805-9. PubMed ID: 20355371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source-drain voltage operation.
    Lee J; Lee H; Kim T; Jin HJ; Shin J; Shin Y; Park S; Khang Y; Hong S
    Nanotechnology; 2012 Mar; 23(8):085204. PubMed ID: 22293578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation.
    Thanihaichelvan M; Browning LA; Dierkes MP; Reyes RM; Kralicek AV; Carraher C; Marlow CA; Plank NOV
    Biosens Bioelectron; 2019 Apr; 130():408-413. PubMed ID: 30266423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.
    Close GF; Yasuda S; Paul B; Fujita S; Wong HS
    Nano Lett; 2008 Feb; 8(2):706-9. PubMed ID: 18269256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors.
    Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M
    ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon analogue.
    Choi DH; Wang Q; Azuma Y; Majima Y; Warner JH; Miyata Y; Shinohara H; Kitaura R
    Sci Rep; 2013; 3():1617. PubMed ID: 23563618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single carbon nanotube transistor at GHz frequency.
    Chaste J; Lechner L; Morfin P; Fève G; Kontos T; Berroir JM; Glattli DC; Happy H; Hakonen P; Plaçais B
    Nano Lett; 2008 Feb; 8(2):525-8. PubMed ID: 18229967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing nanogadgets by interconnecting carbon nanotubes with zinc layers.
    Khazaei M; Lee SU; Pichierri F; Kawazoe Y
    ACS Nano; 2008 May; 2(5):939-43. PubMed ID: 19206491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal--semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation.
    Vijayaraghavan A; Kanzaki K; Suzuki S; Kobayashi Y; Inokawa H; Ono Y; Kar S; Ajayan PM
    Nano Lett; 2005 Aug; 5(8):1575-9. PubMed ID: 16089491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge noise in liquid-gated single-wall carbon nanotube transistors.
    Männik J; Heller I; Janssens AM; Lemay SG; Dekker C
    Nano Lett; 2008 Feb; 8(2):685-8. PubMed ID: 18217786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes.
    Ansaldo A; Castagnola E; Maggiolini E; Fadiga L; Ricci D
    ACS Nano; 2011 Mar; 5(3):2206-14. PubMed ID: 21341752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices.
    Ding L; Wang S; Zhang Z; Zeng Q; Wang Z; Pei T; Yang L; Liang X; Shen J; Chen Q; Cui R; Li Y; Peng LM
    Nano Lett; 2009 Dec; 9(12):4209-14. PubMed ID: 19995085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.