These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16793115)

  • 41. PCDD/PCDF reduction by the co-combustion process.
    Lee VK; Cheung WH; McKay G
    Chemosphere; 2008 Jan; 70(4):682-8. PubMed ID: 17706744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of PCDD/F from incinerator flue gases by entrained-phase adsorption.
    Everaert K; Basyens J; Degrève J
    J Air Waste Manag Assoc; 2002 Dec; 52(12):1378-88. PubMed ID: 12540043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of gas-particle partition of dioxins in flue gas I: evaluation of gasification behavior of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash by thermal treatment.
    Yokohama N; Otaka H; Minato I; Nakata M
    J Hazard Mater; 2008 May; 153(1-2):395-403. PubMed ID: 18054160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling of PCDD/F release from MSW bio-drying.
    Rada EC; Franzinelli A; Ragazzi M; Panaitescu V; Apostol T
    Chemosphere; 2007 Aug; 68(9):1669-74. PubMed ID: 17512968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Critical analysis of PCDD/F emissions from anaerobic digestion.
    Rada EC; Ragazzi M
    Water Sci Technol; 2008; 58(9):1721-5. PubMed ID: 19029711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unveiling the formation and influence mechanisms of PCDD/F memory effect in wet scrubbers: Fundamental research and field verification.
    Peng Y; Ma Y; Lin X; Long J; Bai L; Du H; Cao Y; Wang J; Liu L; Li X
    Sci Total Environ; 2024 Dec; 954():176430. PubMed ID: 39307360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of PCDD/F from flue gases in fixed or moving bed adsorbers.
    Everaert K; Baeyens J
    Waste Manag; 2004; 24(1):37-42. PubMed ID: 14672724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter.
    Lee BK; Mohan BR; Byeon SH; Lim KS; Hong EP
    J Air Waste Manag Assoc; 2013 May; 63(5):499-506. PubMed ID: 23786141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoscale behavior study of collector aggregations in a wet dust scrubber.
    Li X; Wu X; Hu H; Jiang S; Wei T; Wang D
    J Air Waste Manag Assoc; 2018 Jan; 68(1):73-91. PubMed ID: 29120693
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.
    Chein H; Aggarwal SG; Wu HH
    Environ Sci Technol; 2004 Nov; 38(21):5766-72. PubMed ID: 15575298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wet electroscrubbers for state of the art gas cleaning.
    Jaworek A; Balachandran W; Krupa A; Kulon J; Lackowski M
    Environ Sci Technol; 2006 Oct; 40(20):6197-207. PubMed ID: 17120542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale dynamic distribution characteristics of dust collectors in wet scrubber based on image fields.
    Wei T; Li X; Wang D; Liu Y
    J Air Waste Manag Assoc; 2020 Sep; 70(9):847-861. PubMed ID: 32579441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.
    Organiscak JA; Klima SS; Pollock DE
    Min Eng; 2018 Oct; 70(10):50-57. PubMed ID: 30532342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluating effectiveness of dust by-product treatment with scrubbers to mitigate explosion risk in ZrO
    Lee K; Song D; Lee J; Lee CG; Shin GA; Jung S
    J Hazard Mater; 2020 Dec; 400():123284. PubMed ID: 32947697
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Droplet charging for wet scrubbers.
    Pilat MJ; Lukas JC
    J Air Waste Manag Assoc; 2004 Jan; 54(1):3-7. PubMed ID: 14871008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dust exposures during ash removal from incinerators.
    MEGONNELL WH; LUDWIG JH; SILVERMAN L
    AMA Arch Ind Health; 1957 Mar; 15(3):215-22. PubMed ID: 13402228
    [No Abstract]   [Full Text] [Related]  

  • 57. Evaluation of the models available for the prediction of pressure drop in venturi scrubbers.
    Gonçalves JA; Alonso DF; Costa MA; Azzopardi BJ; Coury JR
    J Hazard Mater; 2001 Jan; 81(1-2):123-40. PubMed ID: 11118688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction of environmental chemicals, toxicity and particulate matter in wet scrubber device to achieve zero emissions.
    Ramaswamy K; Jule LT; N N; Subramanian K; R S; L PD; Seenivasan V
    Sci Rep; 2022 Jun; 12(1):9170. PubMed ID: 35654879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive diagnosis of PCDD/F emission from three hazardous waste incinerators.
    Cao X; Ji L; Lin X; Stevens WR; Tang M; Shang F; Tang S; Lu S
    R Soc Open Sci; 2018 Jul; 5(7):172056. PubMed ID: 30109050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PCDD/DF concentrations at the inlets and outlets of wet scrubbers in Korean waste incinerators.
    Choi KI; Lee DH
    Chemosphere; 2007 Jan; 66(2):370-6. PubMed ID: 16793115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.