BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16793358)

  • 21. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.
    Sugiyama T; Price JS; Lanyon LE
    Bone; 2010 Feb; 46(2):314-21. PubMed ID: 19733269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia.
    Yang H; Embry RE; Main RP
    PLoS One; 2017; 12(1):e0169519. PubMed ID: 28076363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of broad frequency vibration on cultured osteoblasts.
    Tanaka SM; Li J; Duncan RL; Yokota H; Burr DB; Turner CH
    J Biomech; 2003 Jan; 36(1):73-80. PubMed ID: 12485640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.
    Rubin C; Turner AS; Mallinckrodt C; Jerome C; McLeod K; Bain S
    Bone; 2002 Mar; 30(3):445-52. PubMed ID: 11882457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of whole-body vibration on bone properties in aging mice.
    Wenger KH; Freeman JD; Fulzele S; Immel DM; Powell BD; Molitor P; Chao YJ; Gao HS; Elsalanty M; Hamrick MW; Isales CM; Yu JC
    Bone; 2010 Oct; 47(4):746-55. PubMed ID: 20638490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical stimulation and intermittent parathyroid hormone treatment induce disproportional osteogenic, geometric, and biomechanical effects in growing mouse bone.
    McAteer ME; Niziolek PJ; Ellis SN; Alge DL; Robling AG
    Calcif Tissue Int; 2010 May; 86(5):389-96. PubMed ID: 20306026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of bone's sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts.
    Judex S; Koh TJ; Xie L
    Osteoporos Int; 2015 Apr; 26(4):1417-28. PubMed ID: 25614140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diaphyseal bone formation in murine tibiae in response to knee loading.
    Zhang P; Tanaka SM; Jiang H; Su M; Yokota H
    J Appl Physiol (1985); 2006 May; 100(5):1452-9. PubMed ID: 16410382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone mass gained in response to external loading is preserved for several weeks following cessation of loading in 10 week C57BL/6J mice.
    Kesavan C; Mohan S
    J Musculoskelet Neuronal Interact; 2010 Dec; 10(4):274-80. PubMed ID: 21116064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knee loading stimulates cortical bone formation in murine femurs.
    Zhang P; Su M; Tanaka SM; Yokota H
    BMC Musculoskelet Disord; 2006 Sep; 7():73. PubMed ID: 16984642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constrained tibial vibration does not produce an anabolic bone response in adult mice.
    Christiansen BA; Kotiya AA; Silva MJ
    Bone; 2009 Oct; 45(4):750-9. PubMed ID: 19576309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.