These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 16793379)
21. Biochemical analysis of active site mutations of human polymerase η. Suarez SC; Beardslee RA; Toffton SM; McCulloch SD Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771 [TBL] [Abstract][Full Text] [Related]
22. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase eta from Arabidopsis thaliana. Santiago MJ; Alejandre-Durán E; Ruiz-Rubio M Mutat Res; 2006 Oct; 601(1-2):51-60. PubMed ID: 16857217 [TBL] [Abstract][Full Text] [Related]
23. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Friedberg EC; Lehmann AR; Fuchs RP Mol Cell; 2005 May; 18(5):499-505. PubMed ID: 15916957 [TBL] [Abstract][Full Text] [Related]
24. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
25. Biochemical evolution of DNA polymerase eta: properties of plant, human, and yeast proteins. Hoffman PD; Curtis MJ; Iwai S; Hays JB Biochemistry; 2008 Apr; 47(16):4583-96. PubMed ID: 18366182 [TBL] [Abstract][Full Text] [Related]
26. DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Belousova EA; Maga G; Fan Y; Kubareva EA; Romanova EA; Lebedeva NA; Oretskaya TS; Lavrik OI Biochemistry; 2010 Jun; 49(22):4695-704. PubMed ID: 20423048 [TBL] [Abstract][Full Text] [Related]
27. Fidelity of mutant HIV-1 reverse transcriptases: interaction with the single-stranded template influences the accuracy of DNA synthesis. Kim B; Hathaway TR; Loeb LA Biochemistry; 1998 Apr; 37(17):5831-9. PubMed ID: 9558316 [TBL] [Abstract][Full Text] [Related]
28. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Friedberg EC; Wagner R; Radman M Science; 2002 May; 296(5573):1627-30. PubMed ID: 12040171 [TBL] [Abstract][Full Text] [Related]
29. In vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme. Hatahet Z; Zhou M; Reha-Krantz LJ; Ide H; Morrical SW; Wallace SS J Mol Biol; 1999 Mar; 286(4):1045-57. PubMed ID: 10047481 [TBL] [Abstract][Full Text] [Related]
30. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
31. Characterization of Escherichia coli translesion synthesis polymerases and their accessory factors. Beuning PJ; Simon SM; Godoy VG; Jarosz DF; Walker GC Methods Enzymol; 2006; 408():318-40. PubMed ID: 16793378 [TBL] [Abstract][Full Text] [Related]
32. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Kusumoto R; Masutani C; Iwai S; Hanaoka F Biochemistry; 2002 May; 41(19):6090-9. PubMed ID: 11994004 [TBL] [Abstract][Full Text] [Related]
33. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7. Li Y; Dutta S; Doublié S; Bdour HM; Taylor JS; Ellenberger T Nat Struct Mol Biol; 2004 Aug; 11(8):784-90. PubMed ID: 15235589 [TBL] [Abstract][Full Text] [Related]
34. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. Tanguy Le Gac N; Delagoutte E; Germain M; Villani G J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066 [TBL] [Abstract][Full Text] [Related]
35. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot. Fuchs RP; Fujii S DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618 [TBL] [Abstract][Full Text] [Related]
36. Identification of a strand-related bias in the PCNA-mediated bypass of spontaneous lesions by yeast Poleta. Abdulovic AL; Minesinger BK; Jinks-Robertson S DNA Repair (Amst); 2007 Sep; 6(9):1307-18. PubMed ID: 17442629 [TBL] [Abstract][Full Text] [Related]
37. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. Kokoska RJ; McCulloch SD; Kunkel TA J Biol Chem; 2003 Dec; 278(50):50537-45. PubMed ID: 14523013 [TBL] [Abstract][Full Text] [Related]
38. Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance? Palud A; Villani G; L'Haridon S; Querellou J; Raffin JP; Henneke G Mol Microbiol; 2008 Nov; 70(3):746-61. PubMed ID: 18826407 [TBL] [Abstract][Full Text] [Related]
39. Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction. Yung C; Suzuki T; Okugawa Y; Kawakami A; Loakes D; Negishi K; Negishi T Nucleic Acids Symp Ser (Oxf); 2007; (51):49-50. PubMed ID: 18029580 [TBL] [Abstract][Full Text] [Related]
40. [Mechanisms of targeted frameshift mutations--insertion formation under error-prone or SOS synthesis of DNA containing CIS-SYN cyncyclobutane thymine dimers]. Grebneva EA Mol Biol (Mosk); 2014; 48(4):531-42. PubMed ID: 25842840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]