BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16793379)

  • 41. In vitro evidence that UV-induced frameshift and substitution mutations at T tracts are the result of misalignment-mediated replication past a specific thymine dimer.
    Wang CI; Taylor JS
    Biochemistry; 1992 Apr; 31(14):3671-81. PubMed ID: 1567822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic switching for efficient and accurate translesion DNA replication.
    McCulloch SD; Kokoska RJ; Chilkova O; Welch CM; Johansson E; Burgers PM; Kunkel TA
    Nucleic Acids Res; 2004; 32(15):4665-75. PubMed ID: 15333698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple solutions to inefficient lesion bypass by T7 DNA polymerase.
    McCulloch SD; Kunkel TA
    DNA Repair (Amst); 2006 Nov; 5(11):1373-83. PubMed ID: 16876489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency, fidelity and enzymatic switching during translesion DNA synthesis.
    McCulloch SD; Kokoska RJ; Kunkel TA
    Cell Cycle; 2004 May; 3(5):580-3. PubMed ID: 15118407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro.
    Clark JM; Beardsley GP
    Biochemistry; 1989 Jan; 28(2):775-9. PubMed ID: 2713344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Replisome-mediated translesion synthesis by a cellular replicase.
    Nevin P; Gabbai CC; Marians KJ
    J Biol Chem; 2017 Aug; 292(33):13833-13842. PubMed ID: 28642369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand.
    Cordeiro-Stone M; Makhov AM; Zaritskaya LS; Griffith JD
    J Mol Biol; 1999 Jun; 289(5):1207-18. PubMed ID: 10373362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions?
    Strauss BS
    Bioessays; 1991 Feb; 13(2):79-84. PubMed ID: 2029269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis.
    Matamoros T; Kim B; Menéndez-Arias L
    J Mol Biol; 2008 Feb; 375(5):1234-48. PubMed ID: 18155043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of dealing with DNA damage-induced replication problems.
    Budzowska M; Kanaar R
    Cell Biochem Biophys; 2009; 53(1):17-31. PubMed ID: 19034694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA polymerases for translesion DNA synthesis: enzyme purification and mouse models for studying their function.
    Fischhaber PL; McDaniel LD; Friedberg EC
    Methods Enzymol; 2006; 408():355-78. PubMed ID: 16793380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The steric gate amino acid tyrosine 112 is required for efficient mismatched-primer extension by human DNA polymerase kappa.
    Niimi N; Sassa A; Katafuchi A; Grúz P; Fujimoto H; Bonala RR; Johnson F; Ohta T; Nohmi T
    Biochemistry; 2009 May; 48(20):4239-46. PubMed ID: 19341290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA damage-induced mutagenesis : a novel target for cancer prevention.
    Wang Z
    Mol Interv; 2001 Dec; 1(5):269-81. PubMed ID: 14993366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta.
    Alt A; Lammens K; Chiocchini C; Lammens A; Pieck JC; Kuch D; Hopfner KP; Carell T
    Science; 2007 Nov; 318(5852):967-70. PubMed ID: 17991862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Yeast and human translesion DNA synthesis polymerases: expression, purification, and biochemical characterization.
    Johnson RE; Prakash L; Prakash S
    Methods Enzymol; 2006; 408():390-407. PubMed ID: 16793382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tolerance of dividing cells to replication stress in UVB-irradiated Arabidopsis roots: requirements for DNA translesion polymerases eta and zeta.
    Curtis MJ; Hays JB
    DNA Repair (Amst); 2007 Sep; 6(9):1341-58. PubMed ID: 17482896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The expanding polymerase universe.
    Goodman MF; Tippin B
    Nat Rev Mol Cell Biol; 2000 Nov; 1(2):101-9. PubMed ID: 11253362
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis?
    Fischhaber PL; Friedberg EC
    DNA Repair (Amst); 2005 Feb; 4(2):279-83. PubMed ID: 15590336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and translesion replication.
    García-Ortiz MV; Roldán-Arjona T; Ariza RR
    FEBS J; 2007 Jul; 274(13):3340-50. PubMed ID: 17550419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Advances of study on human translesion synthesis DNA polymerase eta].
    Hu GH; Zhuang ZX
    Wei Sheng Yan Jiu; 2006 Nov; 35(6):808-11. PubMed ID: 17290774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.